IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v108y2012icp28-40.html
   My bibliography  Save this article

Bayesian nonlinear regression for large p small n problems

Author

Listed:
  • Chakraborty, Sounak
  • Ghosh, Malay
  • Mallick, Bani K.

Abstract

Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik’s ϵ-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models.

Suggested Citation

  • Chakraborty, Sounak & Ghosh, Malay & Mallick, Bani K., 2012. "Bayesian nonlinear regression for large p small n problems," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 28-40.
  • Handle: RePEc:eee:jmvana:v:108:y:2012:i:c:p:28-40
    DOI: 10.1016/j.jmva.2012.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12000164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown P.J. & Fearn T & Vannucci M, 2001. "Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 398-408, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sounak Chakraborty & Peng Zhao & Yilun Huang & Tanujit Dey, 2022. "Semiparametric Survival Analysis of 30-Day Hospital Readmissions with Bayesian Additive Regression Kernel Model," Stats, MDPI, vol. 5(3), pages 1-14, July.
    2. Le, Tri & Clarke, Bertrand, 2016. "Using the Bayesian Shtarkov solution for predictions," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 183-196.
    3. Chakraborty, Sounak, 2012. "Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2742-2755.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Sounak, 2012. "Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2742-2755.
    2. André Mas & Besnik Pumo, 2009. "Functional linear regression with derivatives," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 19-40.
    3. R. G. Aykroyd & K. V. Mardia, 2003. "A wavelet approach to shape analysis for spinal curves," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 605-623.
    4. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2012. "Functional linear regression after spline transformation," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 587-601.
    5. Joyee Ghosh & Andrew E. Ghattas, 2015. "Bayesian Variable Selection Under Collinearity," The American Statistician, Taylor & Francis Journals, vol. 69(3), pages 165-173, August.
    6. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    7. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    8. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    9. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    10. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:108:y:2012:i:c:p:28-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.