Advanced Search
MyIDEAS: Login to save this article or follow this journal

A note on the power superiority of the restricted likelihood ratio test

Contents:

Author Info

  • Praestgaard, Jens
Registered author(s):

    Abstract

    Let be a closed convex cone which contains a linear subspace . We investigate the restricted likelihood ratio test for the null and alternative hypotheses based on an n-dimensional, normally distributed random vector (X1,...,Xn) with unknown mean and known covariance matrix [Sigma]. We prove that if the true mean vector satisfies the alternative hypothesis HA, then the restricted likelihood ratio test is more powerful than the unrestricted test with larger alternative hypothesis [real]n. The proof uses isoperimetric inequalities for the uniform distribution on the n-dimensional sphere and for n-dimensional standard Gaussian measure.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000601
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 104 (2012)
    Issue (Month): 1 (February)
    Pages: 1-15

    as in new window
    Handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:1-15

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Order restricted inference Convex cone Gaussian isoperimetric inequality;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Cohen, Arthur & Kemperman, J. H. B. & Sackrowitz, Harold B., 2000. "Properties of Likelihood Inference for Order Restricted Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 50-77, January.
    2. Tsai, Mingtan, 1992. "On the power superiority of likelihood ratio tests for restricted alternatives," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 102-109, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:1-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.