IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v116y2024ics0969699724000206.html
   My bibliography  Save this article

Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination

Author

Listed:
  • Hu, Rong
  • Wang, Deyun
  • Feng, Huilin
  • Zhang, Junfeng
  • Pan, Xiaoran
  • Deng, Songwu

Abstract

With the rapid increase in air traffic, the scheduling optimization of one single resource is difficult to meet the needs of airport surface operation. Thus, we propose a new joint scheduling model of airport gate and runway with three different objectives, i.e., service quality (minimizing the number of flights assigned to aprons), operation efficiency (maximizing the ground-air coordination) and environmental impact (minimizing the carbon emissions during the whole process of aircraft ground operation and airport noise disturbance). Then, we apply the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with an improved population initialization method to solve the model. Finally, we perform a case study based on Guangzhou Baiyun International Airport (CAN). The results show a negative correlation between operational efficiency and environmental impact. The optimized scheme can at most reduce 48 flights assigned to aprons, make all flights ground-air coordinated, or reduce 12.07t carbon emissions and 0.55Â dB noise level at the runway end. Furthermore, we compare the median and minimum Pareto schemes to the original scheme. It is found that the model proposed in this paper optimizes not only the original assignment scheme on three objectives, but also the gate assignment robustness, runway usage balance, and other benefits.

Suggested Citation

  • Hu, Rong & Wang, Deyun & Feng, Huilin & Zhang, Junfeng & Pan, Xiaoran & Deng, Songwu, 2024. "Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination," Journal of Air Transport Management, Elsevier, vol. 116(C).
  • Handle: RePEc:eee:jaitra:v:116:y:2024:i:c:s0969699724000206
    DOI: 10.1016/j.jairtraman.2024.102555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699724000206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2024.102555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:116:y:2024:i:c:s0969699724000206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.