IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v103y2024ics0160289624000011.html
   My bibliography  Save this article

Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence

Author

Listed:
  • Zurrin, Riley
  • Wong, Samantha Tze Sum
  • Roes, Meighen M.
  • Percival, Chantal M.
  • Chinchani, Abhijit
  • Arreaza, Leo
  • Kusi, Mavis
  • Momeni, Ava
  • Rasheed, Maiya
  • Mo, Zhaoyi
  • Goghari, Vina M.
  • Woodward, Todd S.

Abstract

A dimensionality reduction method was used to determine the task-timing-related functional brain networks underlying the Raven's Standard Progressive Matrices (RSPM), a non-verbal estimate of fluid intelligence (Gf). We identified five macro-scale task-based blood‑oxygen-level-dependent (BOLD)-signal brain networks and interpreted their network-level task-induced BOLD changes to provide functional interpretations separately for each network. This led to new observations about the brain networks underlying the RSPM: (1) the multiple demand network (MDN) for solution searching peaked early in the trial (∼9 s peak), followed by response (RESP) for response selection (∼12 s), and re-evaluation (RE-EV) for solution checking (∼18 s peak), (2) high activity in the MDN was correlated with high activity in the later-peaking RE-EV network, proposed to underpin cooperative solution searching (MDN) and checking (RE-EV) processes, and (3) high activity in the MDN in all conditions was associated with low accuracy in the hard RSPM condition, suggesting that those with lower performance on hard problems allocate more resources into solution-searching across all conditions. These findings corroborate the MDN's significance in Gf solution searching, and add the RE-EV network as playing an important checking role, providing overlap with the proposed abstraction/elaboration and hypothesis testing phases of the Parieto-Frontal Integration Theory (P-FIT). Therefore, this set of results not only supports past theoretical work on the brain networks underlying Gf and the RSPM task, but extends it by providing more complete anatomical, temporal, and functional information based on a set of brain task-based networks which replicate over many tasks.

Suggested Citation

  • Zurrin, Riley & Wong, Samantha Tze Sum & Roes, Meighen M. & Percival, Chantal M. & Chinchani, Abhijit & Arreaza, Leo & Kusi, Mavis & Momeni, Ava & Rasheed, Maiya & Mo, Zhaoyi & Goghari, Vina M. & Wood, 2024. "Functional brain networks involved in the Raven's standard progressive matrices task and their relation to theories of fluid intelligence," Intelligence, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:intell:v:103:y:2024:i:c:s0160289624000011
    DOI: 10.1016/j.intell.2024.101807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289624000011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2024.101807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:103:y:2024:i:c:s0160289624000011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.