IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v105y2022icp144-174.html
   My bibliography  Save this article

Stochastic loss reserving with mixture density neural networks

Author

Listed:
  • Al-Mudafer, Muhammed Taher
  • Avanzi, Benjamin
  • Taylor, Greg
  • Wong, Bernard

Abstract

In recent years, new techniques based on artificial intelligence and machine learning in particular have been making a revolution in the work of actuaries, including in loss reserving. A particularly promising technique is that of neural networks, which have been shown to offer a versatile, flexible and accurate approach to loss reserving. However, applications of neural networks in loss reserving to date have been primarily focused on the (important) problem of fitting accurate central estimates of the outstanding claims. In practice, properties regarding the variability of outstanding claims are equally important (e.g., quantiles for regulatory purposes).

Suggested Citation

  • Al-Mudafer, Muhammed Taher & Avanzi, Benjamin & Taylor, Greg & Wong, Bernard, 2022. "Stochastic loss reserving with mixture density neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 144-174.
  • Handle: RePEc:eee:insuma:v:105:y:2022:i:c:p:144-174
    DOI: 10.1016/j.insmatheco.2022.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Feb 2024.
    2. Benjamin Avanzi & Greg Taylor & Melantha Wang & Bernard Wong, 2023. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," Papers 2301.12710, arXiv.org.

    More about this item

    Keywords

    Loss reserving; Neural network; Mixture density network; Distributional forecasting; Machine learning;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:105:y:2022:i:c:p:144-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.