IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i3s1751157719303517.html
   My bibliography  Save this article

An alternative topic model based on Common Interest Authors for topic evolution analysis

Author

Listed:
  • Jung, Sukhwan
  • Yoon, Wan Chul

Abstract

Topic modeling methods aim to extract semantic topics from unstructured documents, and topic evolution is one of its branches seeking to analyze how temporal topics in a set of documents evolve and has shown successful identification of content transitions within static topics over time; yet, the inherent limitations of topic modeling methods inhibit traditional topic evolution methods from highlighting topical correlations between different, dynamic topics. The authors propose an alternative topic modeling method conscious of the topical correlation in the academic domain by introducing the notion of the common interest authors (CIA11CIA: Common Interest Authors), defining a topic as a set of shared common research interests of a researcher group. Publication records related to the Human Computer Interaction field were extracted from the Microsoft Academic Graph dataset, with virtual reality as the target field of research. The result showed that the proposed alternative topic modeling is capable of successfully model coherent topics regardless of the topic size with only the meta-data of the document set, indicating that the alternative approach is not only capable of allowing topic correlation analysis during the topic evolution but also able to generate coherent topics at the same time.

Suggested Citation

  • Jung, Sukhwan & Yoon, Wan Chul, 2020. "An alternative topic model based on Common Interest Authors for topic evolution analysis," Journal of Informetrics, Elsevier, vol. 14(3).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303517
    DOI: 10.1016/j.joi.2020.101040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719303517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luciano Kay & Nils Newman & Jan Youtie & Alan L. Porter & Ismael Rafols, 2014. "Patent overlay mapping: Visualizing technological distance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2432-2443, December.
    2. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    3. Sven E. Hug & Michael Ochsner & Martin P. Brändle, 2017. "Citation analysis with microsoft academic," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 371-378, April.
    4. Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
    5. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    6. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    7. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    8. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    9. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    10. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    11. Vladimir Batagelj & Monika Cerinšek, 2013. "On bibliographic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 845-864, September.
    12. Battistella, Cinzia, 2014. "The organisation of Corporate Foresight: A multiple case study in the telecommunication industry," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 60-79.
    13. Diego Raphael Amancio, 2015. "A Complex Network Approach to Stylometry," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    14. Howard D. White & Katherine W. McCain, 1998. "Visualizing a discipline: An author co‐citation analysis of information science, 1972–1995," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(4), pages 327-355.
    15. Bongers, Anelí & Torres, José L., 2014. "Measuring technological trends: A comparison between U.S. and U.S.S.R./Russian jet fighter aircraft," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doo-San Kim & Byeong-Cheol Lee & Kwang-Hi Park, 2021. "Determination of Motivating Factors of Urban Forest Visitors through Latent Dirichlet Allocation Topic Modeling," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    2. Tian, Yunpei & Li, Gang & Mao, Jin, 2023. "Predicting the evolution of scientific communities by interpretable machine learning approaches," Journal of Informetrics, Elsevier, vol. 17(2).
    3. Jung, Sukhwan & Segev, Aviv, 2022. "DAC: Descendant-aware clustering algorithm for network-based topic emergence prediction," Journal of Informetrics, Elsevier, vol. 16(3).
    4. Chen, Hongshu & Jin, Qianqian & Wang, Ximeng & Xiong, Fei, 2022. "Profiling academic-industrial collaborations in bibliometric-enhanced topic networks: A case study on digitalization research," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Cen Song & Sijia Zhou & Kyle Hunt & Jun Zhuang, 2022. "Comprehensive Evolution Analysis of Public Perceptions Related to Pediatric Care: A Sina Weibo Case Study (2013–2020)," SAGE Open, , vol. 12(1), pages 21582440221, March.
    6. Xinyuan Zhang & Qing Xie & Chaemin Song & Min Song, 2022. "Mining the evolutionary process of knowledge through multiple relationships between keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2023-2053, April.
    7. Weibin Lin & Xianli Wu & Zhengwei Wang & Xiaoji Wan & Hailin Li, 2022. "Topic Network Analysis Based on Co-Occurrence Time Series Clustering," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    8. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    9. Hongshu Chen & Xinna Song & Qianqian Jin & Ximeng Wang, 2022. "Network dynamics in university-industry collaboration: a collaboration-knowledge dual-layer network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6637-6660, November.
    10. Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.
    11. Hengmin Zhu & Li Qian & Wang Qin & Jing Wei & Chao Shen, 2022. "Evolution analysis of online topics based on ‘word-topic’ coupling network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3767-3792, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
    2. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    3. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    4. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    5. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    6. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    7. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    8. Chakresh Kumar Singh & Demival Vasques Filho & Shivakumar Jolad & Dion R. J. O’Neale, 2020. "Evolution of interdependent co-authorship and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 385-404, October.
    9. van der Have, Robert P. & Rubalcaba, Luis, 2016. "Social innovation research: An emerging area of innovation studies?," Research Policy, Elsevier, vol. 45(9), pages 1923-1935.
    10. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "Hybrid self-optimized clustering model based on citation links and textual features to detect research topics," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    11. Qingnan Xie & Richard B. Freeman, 2020. "The Contribution of Chinese Diaspora Researchers to Global Science and China's Catching Up in Scientific Research," NBER Working Papers 27169, National Bureau of Economic Research, Inc.
    12. Fernando A. F. Ferreira & Sérgio P. Santos, 2021. "Two decades on the MACBETH approach: a bibliometric analysis," Annals of Operations Research, Springer, vol. 296(1), pages 901-925, January.
    13. Saeed-Ul Hassan & Naif R. Aljohani & Mudassir Shabbir & Umair Ali & Sehrish Iqbal & Raheem Sarwar & Eugenio Martínez-Cámara & Sebastián Ventura & Francisco Herrera, 2020. "Tweet Coupling: a social media methodology for clustering scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 973-991, August.
    14. Jung, Sukhwan & Segev, Aviv, 2022. "DAC: Descendant-aware clustering algorithm for network-based topic emergence prediction," Journal of Informetrics, Elsevier, vol. 16(3).
    15. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    16. Ali Gazni & Fereshteh Didegah, 2016. "The relationship between authors’ bibliographic coupling and citation exchange: analyzing disciplinary differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 609-626, May.
    17. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    18. Noémi Gaskó & Rodica Ioana Lung & Mihai Alexandru Suciu, 2016. "A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 613-632, August.
    19. Hervas Oliver,Jose Luis & Gonzalez,Gregorio & Caja,Pedro, 2014. "Clusters and industrial districts: where is the literature going? Identifying emerging sub-fields of research," INGENIO (CSIC-UPV) Working Paper Series 201409, INGENIO (CSIC-UPV).
    20. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.