IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v44y2024ics1874548223000720.html
   My bibliography  Save this article

A novel cost-based optimization model for electric power distribution systems resilience improvement under dust storms

Author

Listed:
  • Haghshenas, Morteza
  • Hooshmand, Rahmat-Allah
  • Gholipour, Mehdi

Abstract

In the recent years, dust storms (DSs) pose a serious threat to critical infrastructure such as power distribution networks (PDNs). During DSs, the contamination of insulators, increases the possibility of damage to the PDNs insulation system and flashover induced power outage may occur. Power outages disrupt the performance of other urban infrastructures and, in addition to heavy financial losses, cause public dissatisfaction. Although this issue is of particular importance in areas with humid climate, a few studies have been reported on PDNs resilience improvement against DSs. This paper proposes a novel cost-based optimization model to make PDNs more resilient to DSs considering uncertainties. The proposed model is based on the two-stage stochastic mixed-integer programming (SMIP). In the first stage, decisions are made to equip repair crews (RCs) with insulator washing machines, hardening distribution lines with silicone-rubber insulators (SIs), and deploy backup distributed generators (DGs). Decisions in the second stage include network reconfiguration, RCs routing, DGs power dispatch, and load shedding as the critical options for PDN outage management during/after DSs. Case studies are evaluated in the IEEE 69-bus test system and a real 209-bus PDN in Khuzestan province, a coastal province in southwestern Iran. The simulation results at different budget levels have confirmed the efficiency of the proposed model for cost-optimal resilience enhancement planning of PDNs against DSs.

Suggested Citation

  • Haghshenas, Morteza & Hooshmand, Rahmat-Allah & Gholipour, Mehdi, 2024. "A novel cost-based optimization model for electric power distribution systems resilience improvement under dust storms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
  • Handle: RePEc:eee:ijocip:v:44:y:2024:i:c:s1874548223000720
    DOI: 10.1016/j.ijcip.2023.100659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:44:y:2024:i:c:s1874548223000720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.