IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v43y2023ics1874548223000562.html
   My bibliography  Save this article

Measurement protection to prevent cyber–physical attacks against power system State Estimation

Author

Listed:
  • Margossian, Harag
  • Kfouri, Ronald
  • Saliba, Rita

Abstract

Smart applications supporting modern power systems are susceptible to cyber–physical attacks, particularly False Data Injection attacks that manipulate the input measurements of State Estimation (SE) compromising its output states. This paper proposes an Integer Linear Programming formulation that protects an optimal number of measurement units to prevent cyber–physical attacks, enhancing the robustness of SE. Our approach exhibits low complexity, applies to both linear and nonlinear SE, and converges rapidly toward the optimal solution. The formulation requires information about the grid topology and measurement distribution but does not depend on the power flow equations. Also, the generalized formulation can be customized to consider distinct protection costs for all measurement types, various priorities for different measurements, and a range of measurements and pseudo-measurements. Simulations are performed on the widely used IEEE 14 and 118-bus systems to verify the approach for linear and nonlinear SE and illustrate its practicality.

Suggested Citation

  • Margossian, Harag & Kfouri, Ronald & Saliba, Rita, 2023. "Measurement protection to prevent cyber–physical attacks against power system State Estimation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
  • Handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000562
    DOI: 10.1016/j.ijcip.2023.100643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548223000562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2023.100643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:43:y:2023:i:c:s1874548223000562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.