IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v36y2022ics187454822100072x.html
   My bibliography  Save this article

Defensive cost–benefit analysis of smart grid digital functionalities

Author

Listed:
  • Stright, Jim
  • Cheetham, Peter
  • Konstantinou, Charalambos

Abstract

Modern smart grids offer several types of digital control and monitoring of electric power transmission and distribution that enable greater efficiency and integrative functionality than traditional power grids. These benefits, however, introduce greater complexity and greatly disrupt and expand the threat landscape. The number of vulnerabilities is increasing as grid-connected devices proliferate. The potential costs to society of these vulnerabilities are difficult to determine, as are their likelihoods of successful exploitation. In this article, we present a method for comparing the net economic benefits and costs of the various cyber-functionalities associated with smart grids from the perspective of cyberattack vulnerabilities and defending against them. The economic considerations of cyber defense spending suggest the existence of optimal levels of expenditures, which might vary among digital functionalities. We illustrate hypothetical case studies on how digital functionalities can be assessed and compared with respect to the costs of defending them from cyberattacks.

Suggested Citation

  • Stright, Jim & Cheetham, Peter & Konstantinou, Charalambos, 2022. "Defensive cost–benefit analysis of smart grid digital functionalities," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
  • Handle: RePEc:eee:ijocip:v:36:y:2022:i:c:s187454822100072x
    DOI: 10.1016/j.ijcip.2021.100489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S187454822100072X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2021.100489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.‐Elisabeth Paté‐Cornell & Marshall Kuypers & Matthew Smith & Philip Keller, 2018. "Cyber Risk Management for Critical Infrastructure: A Risk Analysis Model and Three Case Studies," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 226-241, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    2. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    3. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    4. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Chatzis, Petros & Stavrou, Eliana, 2022. "Cyber-threat landscape of border control infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    6. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    7. Todor Tagarev & Valeri Ratchev, 2020. "A Taxonomy of Crisis Management Functions," Sustainability, MDPI, vol. 12(12), pages 1-34, June.
    8. Natalie M. Scala & Allison C. Reilly & Paul L. Goethals & Michel Cukier, 2019. "Risk and the Five Hard Problems of Cybersecurity," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2119-2126, October.
    9. Alessandro Mazzoccoli, 2023. "Optimal Cyber Security Investment in a Mixed Risk Management Framework: Examining the Role of Cyber Insurance and Expenditure Analysis," Risks, MDPI, vol. 11(9), pages 1-14, August.
    10. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
    11. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    12. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Loretta Mastroeni & Alessandro Mazzoccoli & Maurizio Naldi, 2022. "Pricing Cat Bonds for Cloud Service Failures," JRFM, MDPI, vol. 15(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:36:y:2022:i:c:s187454822100072x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.