IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i3p879-898.html
   My bibliography  Save this article

A bi-level framework for heterogeneous fleet sizing of ride-hailing services considering an approximated mixed equilibrium between automated and non-automated traffic

Author

Listed:
  • Fan, Qiaochu
  • van Essen, J. Theresia
  • Correia, Gonçalo H.A.

Abstract

Ride-hailing companies will face the emergence and gradual expansion of AVs-only zones in urban areas where only automated vehicles (AVs) are allowed to circulate. When owning a mixed fleet (automated and conventional taxis), a ride-hailing company has to determine the optimal fleet size as a function of the gradually expanding coverage of AVs-only zones while taking into account interactions with privately-owned human-driven vehicles. To model this problem, we propose a bi-level framework in which the lower level captures the mixed routing behaviour of the vehicles and the endogenous traffic congestion, and the upper level determines fleet sizes to maximise profit. A parallel genetic algorithm is introduced to solve this bi-level framework, which is embedded with a tailored algorithm for solving the lower-level model. Numerical experiments are conducted on instances based on a small network and the network of the city of Delft, The Netherlands, to demonstrate the performance of the proposed solution method and investigate the impacts of AVs-only zones on traffic and ride-hailing operations. Results indicate that the fleet size of automated taxis increases nonlinearly with the expansion of the AVs-only zone while that of conventional taxis decreases as demand shifts from human-driven vehicles to automated taxis. The fleet size decision depends heavily on the fleet’s cost structure, the location and the distribution of parking depots. Furthermore, the existence of an AVs-only zone leads to detours for human-driven vehicles in the early stages, but it will bring major benefits by reducing congestion as its size increases.

Suggested Citation

  • Fan, Qiaochu & van Essen, J. Theresia & Correia, Gonçalo H.A., 2024. "A bi-level framework for heterogeneous fleet sizing of ride-hailing services considering an approximated mixed equilibrium between automated and non-automated traffic," European Journal of Operational Research, Elsevier, vol. 315(3), pages 879-898.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:879-898
    DOI: 10.1016/j.ejor.2024.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:879-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.