IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p567-579.html
   My bibliography  Save this article

A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan

Author

Listed:
  • Kivanç, İpek
  • Fecarotti, Claudia
  • Raassens, Néomie
  • van Houtum, Geert-Jan

Abstract

Delivering after-sales maintenance services is a challenging task for original equipment manufacturers who must tailor their offers to customers’ needs. To accommodate this challenge, we propose a multi-objective optimization model to derive optimal maintenance policies for systems with a large number of heterogeneous components over a finite lifespan. Based on the practical assumption of a fixed time interval between two consecutive scheduled downs, we develop a decomposition approach that enables the fast computation of the optimal policy per component and the optimal time interval between two consecutive scheduled visits. We also analyze the structural properties of the optimal policies for both age-based and condition-based maintenance and prove that they have a non-static control-limit structure. Using a set of computational experiments, we first investigate the computational tractability of our model for systems with an increasing number of components. Then, we apply our model to a real case study to demonstrate how it can be used to derive optimal maintenance policies tailored to different customer needs.

Suggested Citation

  • Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:567-579
    DOI: 10.1016/j.ejor.2023.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:567-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.