IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i1p161-175.html
   My bibliography  Save this article

Container port truck dispatching optimization using Real2Sim based deep reinforcement learning

Author

Listed:
  • Jin, Jiahuan
  • Cui, Tianxiang
  • Bai, Ruibin
  • Qu, Rong

Abstract

In marine container terminals, truck dispatching optimization is often considered as the primary focus as it provides crucial synergy between the sea-side operations and yard-side activities and hence can greatly affect the terminal throughput and quay crane utilization. However, many existing studies rely on strong assumptions that often overlook the uncertainties and dynamics innate to real-life applications. In this work, we propose a dynamic truck dispatching system for container ports equipped with the latest IoT technologies. The system is comprised of Real2Sim simulation and a truck dispatch agent, trained through a spatial-attention based deep reinforcement learning module, supported by an expert network. The proposed Real2Sim framework has the ability to model the non-linear complexities and non-deterministic events while our attention-aware deep reinforcement learning module is capable of making full use of both historical and real-time port data to learn a high-quality truck dispatching policy under uncertainties. Extensive experiments show our proposed method has good generalization and achieves the state-of-the-art results on the problems derived from real-life data of a large international port.

Suggested Citation

  • Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:161-175
    DOI: 10.1016/j.ejor.2023.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723008792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachen Li & Xingfeng Duan & Zhennan Xiong & Peng Yao, 2024. "Tugboat Scheduling Method Based on the NRPER-DDPG Algorithm: An Integrated DDPG Algorithm with Prioritized Experience Replay and Noise Reduction," Sustainability, MDPI, vol. 16(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:161-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.