IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i2p776-791.html
   My bibliography  Save this article

A quadrant shrinking heuristic for solving the dynamic multi-objective disaster response personnel routing and scheduling problem

Author

Listed:
  • Tarhan, İstenç
  • Zografos, Konstantinos G.
  • Sutanto, Juliana
  • Kheiri, Ahmed

Abstract

In the aftermath of natural disasters there is a need to provide disaster relief services. These services are offered by diverse disaster relief personnel teams that are specialized in the provision of the required services, e.g., teams that set up temporary shelters, teams that are providing medical services. These services are provided during a rolling horizon and the demand and supply characteristics of the disaster relief system evolve dynamically over time. In this paper we are presenting a dynamic variant of the multi-objective disaster relief personnel routing and scheduling (DDRPRS) problem, which considers efficiency, fairness and transportation risk objectives. We introduce a Quadrant Shrinking Method (QSM) based heuristic algorithm to approximate the Pareto Optimal Solutions of the DDRPRS problem under consideration. The proposed algorithm considers the performance of the solutions over the entire planning horizon and their robustness over time in terms of their efficiency, fairness and transportation risk. We apply the proposed heuristic for routing and scheduling personnel involved in evacuation and medical operations using data from the 2018 Lombok Earthquake in Indonesia. Our heuristic implementation covers both the dynamic and static variants of the disaster relief personnel routing and scheduling problem. Computational results show that the proposed heuristic can generate in a short time sufficiently large number of Pareto Optimal Solutions which cover the entire Pareto frontier as indicated by the diverging behaviours of the Pareto Optimal Solutions and the associated hypervolume metrics.

Suggested Citation

  • Tarhan, İstenç & Zografos, Konstantinos G. & Sutanto, Juliana & Kheiri, Ahmed, 2024. "A quadrant shrinking heuristic for solving the dynamic multi-objective disaster response personnel routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 776-791.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:776-791
    DOI: 10.1016/j.ejor.2023.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:776-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.