IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i1p280-296.html
   My bibliography  Save this article

An expandable machine learning-optimization framework to sequential decision-making

Author

Listed:
  • Yilmaz, Dogacan
  • Büyüktahtakın, İ. Esra

Abstract

We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems by predicting the values of binary decision variables in an optimal solution. We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to combinatorial problems. The sequential nature of the combinatorial optimization problems considered is captured with recurrent neural networks and a sliding-attention window. We integrate an attention-based encoder–decoder neural network architecture with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions to time-dependent optimization problems. In this framework, the required level of predictions is optimized to eliminate the infeasibility of the ML predictions. These predictions are then fixed in mixed-integer programming (MIP) problems to solve them quickly with the aid of a commercial solver. We demonstrate our approach to tackling the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing (MCLSP) and multi-dimensional knapsack (MSMK). Our results show that models trained on shorter and smaller-dimensional instances can be successfully used to predict longer and larger-dimensional problems. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. We compare PredOpt with various specially designed heuristics and show that our framework outperforms them. PredOpt can be advantageous for solving dynamic MIP problems that need to be solved instantly and repetitively.

Suggested Citation

  • Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:280-296
    DOI: 10.1016/j.ejor.2023.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723008202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:280-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.