IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i1p69-91.html
   My bibliography  Save this article

Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts

Author

Listed:
  • Lastra-Díaz, Juan J.
  • Ortuño, M. Teresa

Abstract

The irregular strip-packing problem, also known as nesting or marker making, is defined as the automatic computation of a non-overlapping placement of a set of non-convex polygons onto a rectangular strip of fixed width and unbounded length, such that the strip length is minimized. Nesting methods based on heuristics are a mature technology, and currently, the only practical solution to this problem. However, recent performance gains of the Mixed-Integer Programming (MIP) solvers, together with the known limitations of the heuristics methods, have encouraged the exploration of exact optimization models for nesting during the last decade. Despite the research effort, there is room to improve the efficiency of the current family of exact MIP models for nesting. In order to bridge this gap, this work introduces a new family of continuous MIP models based on a novel formulation of the NoFit-Polygon Covering Model (NFP-CM), called NFP-CM based on Vertical Slices (NFP-CM-VS). Our new family of MIP models is based on a new convex decomposition of the feasible space of relative placements between pieces into vertical slices, together with a new family of valid inequalities, symmetry breakings, and variable eliminations derived from the former convex decomposition. Our experiments show that our new NFP-CM-VS models outperform the current state-of-the-art MIP models. Ten instances are solved up to optimality within one hour for the first time, including one with 27 pieces. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of our models, experiments, and results.

Suggested Citation

  • Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:69-91
    DOI: 10.1016/j.ejor.2023.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:69-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.