IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i3p829-843.html
   My bibliography  Save this article

Effective metaheuristic algorithms for the minimum differential dispersion problem

Author

Listed:
  • Wang, Yang
  • Wu, Qinghua
  • Glover, Fred

Abstract

This paper presents tabu search and memetic search algorithms for solving the minimum differential dispersion problem. The tabu search algorithm employs a neighborhood decomposition candidate list strategy and a rarely used solution-based tabu memory. Unlike the typical attribute-based tabu list, the solution-based tabu strategy leads to a more highly focused intensification process and avoids tuning the tabu tenure, while employing coordinated hash functions that accelerate the determination of tabu status. The memetic search algorithm incorporates the tabu search procedure within it and makes use of a crossover operator that generates solution assignments by an evaluation mechanism that includes both quality and distance criteria. Experimental results on a benchmark testbed of 250 problems reveal that our tabu search algorithm is capable of discovering better solutions for 179 (71.6%) of the problem instances, while our memetic search algorithm finds better solutions for 157 (62.8%) of the instances, collectively yielding better solutions for 181 (72.4%) of the test problems than recently reported state-of-the-art algorithms.

Suggested Citation

  • Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:3:p:829-843
    DOI: 10.1016/j.ejor.2016.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Abraham & Marti, Rafael, 2007. "Tabu search and GRASP for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 178(1), pages 71-84, April.
    2. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    3. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    4. Celso Ribeiro & Isabel Rosseti & Reinaldo Vallejos, 2012. "Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms," Journal of Global Optimization, Springer, vol. 54(2), pages 405-429, October.
    5. Daniel Porumbel & Jin-Kao Hao & Fred Glover, 2011. "A simple and effective algorithm for the MaxMin diversity problem," Annals of Operations Research, Springer, vol. 186(1), pages 275-293, June.
    6. Wang, Yang & Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2012. "Path relinking for unconstrained binary quadratic programming," European Journal of Operational Research, Elsevier, vol. 223(3), pages 595-604.
    7. Carlton, William B. & Barnes, J. Wesley, 1996. "A note on hashing functions and tabu search algorithms," European Journal of Operational Research, Elsevier, vol. 95(1), pages 237-239, November.
    8. J. Randall Brown, 1979. "The Sharing Problem," Operations Research, INFORMS, vol. 27(2), pages 324-340, April.
    9. Glover, Fred & Ye, Tao & Punnen, Abraham P. & Kochenberger, Gary, 2015. "Integrating tabu search and VLSN search to develop enhanced algorithms: A case study using bipartite boolean quadratic programs," European Journal of Operational Research, Elsevier, vol. 241(3), pages 697-707.
    10. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Song & Yang Wang & Haibo Wang & Qinghua Wu & Abraham P. Punnen, 2019. "An effective multi-wave algorithm for solving the max-mean dispersion problem," Journal of Heuristics, Springer, vol. 25(4), pages 731-752, October.
    2. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong, 2019. "Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 35-48.
    3. Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    4. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    5. Michele Samorani & Yang Wang & Yang Wang & Zhipeng Lv & Fred Glover, 2019. "Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem," Journal of Heuristics, Springer, vol. 25(4), pages 629-642, October.
    6. Schulz, Arne, 2021. "The balanced maximally diverse grouping problem with block constraints," European Journal of Operational Research, Elsevier, vol. 294(1), pages 42-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    2. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    3. Amirgaliyeva, Zhazira & Mladenović, Nenad & Todosijević, Raca & Urošević, Dragan, 2017. "Solving the maximum min-sum dispersion by alternating formulations of two different problems," European Journal of Operational Research, Elsevier, vol. 260(2), pages 444-459.
    4. Qinghua Wu & Yang Wang & Fred Glover, 2020. "Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 74-89, January.
    5. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    6. Jiawei Song & Yang Wang & Haibo Wang & Qinghua Wu & Abraham P. Punnen, 2019. "An effective multi-wave algorithm for solving the max-mean dispersion problem," Journal of Heuristics, Springer, vol. 25(4), pages 731-752, October.
    7. Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
    8. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    9. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    10. Sayyady, Fatemeh & Fathi, Yahya, 2016. "An integer programming approach for solving the p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 216-225.
    11. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    12. Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
    13. Daniel Porumbel & Jin-Kao Hao & Fred Glover, 2011. "A simple and effective algorithm for the MaxMin diversity problem," Annals of Operations Research, Springer, vol. 186(1), pages 275-293, June.
    14. Punnen, Abraham P. & Wang, Yang, 2016. "The bipartite quadratic assignment problem and extensions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 715-725.
    15. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    16. Sayah, David & Irnich, Stefan, 2017. "A new compact formulation for the discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 62-67.
    17. Gliesch, Alex & Ritt, Marcus, 2021. "A hybrid heuristic for the maximum dispersion problem," European Journal of Operational Research, Elsevier, vol. 288(3), pages 721-735.
    18. David Sayah & Stefan Irnich, 2015. "A New Compact Formulation for Discrete p-Dispersion," Working Papers 1517, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    20. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:3:p:829-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.