IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i1p74-84.html
   My bibliography  Save this article

Stronger multi-commodity flow formulations of the (capacitated) sequential ordering problem

Author

Listed:
  • Letchford, Adam N.
  • Salazar-González, Juan-José

Abstract

The sequential ordering problem (SOP) is the generalisation of the asymmetric travelling salesman problem in which there are precedence relations between pairs of nodes. Hernández & Salazar introduced a multi-commodity flow (MCF) formulation for a generalisation of the SOP in which the vehicle has a limited capacity. We strengthen this MCF formulation by fixing variables and adding valid equations. We then use polyhedral projection, together with some known results on flows, cuts and metrics, to derive new families of strong valid inequalities for both problems. Finally, we give computational results, which show that our findings yield good lower bounds in practice.

Suggested Citation

  • Letchford, Adam N. & Salazar-González, Juan-José, 2016. "Stronger multi-commodity flow formulations of the (capacitated) sequential ordering problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 74-84.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:1:p:74-84
    DOI: 10.1016/j.ejor.2015.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H.L.M. Kerivin & M. Lacroix & A.R. Mahjoub & A. Quilliot, 2008. "The splittable pickup and delivery problem with reloads," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(2), pages 112-133.
    2. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    3. Letchford, Adam N. & Salazar-González, Juan-José, 2015. "Stronger multi-commodity flow formulations of the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 730-738.
    4. Vicky Mak & Andreas Ernst, 2007. "New cutting-planes for the time- and/or precedence-constrained ATSP and directed VRP," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 69-98, August.
    5. Escudero, L. F., 1988. "An inexact algorithm for the sequential ordering problem," European Journal of Operational Research, Elsevier, vol. 37(2), pages 236-249, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2020. "An MDD-Based Lagrangian Approach to the Multicommodity Pickup-and-Delivery TSP," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 263-278, April.
    2. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2020. "Exact algorithms for the multi-pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 284(3), pages 906-919.
    3. Bolor Jargalsaikhan & Ward Romeijnders & Kees Jan Roodbergen, 2021. "A Compact Arc-Based ILP Formulation for the Pickup and Delivery Problem with Divisible Pickups and Deliveries," Transportation Science, INFORMS, vol. 55(2), pages 336-352, March.
    4. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    5. Salii, Yaroslav, 2019. "Revisiting dynamic programming for precedence-constrained traveling salesman problem and its time-dependent generalization," European Journal of Operational Research, Elsevier, vol. 272(1), pages 32-42.
    6. Naccache, Salma & Côté, Jean-François & Coelho, Leandro C., 2018. "The multi-pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 269(1), pages 353-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michiel A. J. uit het Broek & Albert H. Schrotenboer & Bolor Jargalsaikhan & Kees Jan Roodbergen & Leandro C. Coelho, 2021. "Asymmetric Multidepot Vehicle Routing Problems: Valid Inequalities and a Branch-and-Cut Algorithm," Operations Research, INFORMS, vol. 69(2), pages 380-409, March.
    2. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    3. Archetti, Claudia & Ljubić, Ivana, 2022. "Comparison of formulations for the Inventory Routing Problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 997-1008.
    4. Fernández, Elena & Roca-Riu, Mireia & Speranza, M. Grazia, 2018. "The Shared Customer Collaboration Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1078-1093.
    5. Dollevoet, T.A.B. & Munari, P. & Spliet, R., 2020. "A p-step formulation for the capacitated vehicle routing problem," Econometric Institute Research Papers EI2020-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Leggieri, Valeria & Haouari, Mohamed, 2017. "Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 755-767.
    7. Bektaş, Tolga & Gouveia, Luis & Martínez-Sykora, Antonio & Salazar-González, Juan-José, 2019. "Balanced vehicle routing: Polyhedral analysis and branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 273(2), pages 452-463.
    8. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    9. Twan Dollevoet & Remy Spliet, 2023. "Preprocessing to Reduce Vehicle Capacity for Routing Problems," SN Operations Research Forum, Springer, vol. 4(2), pages 1-7, June.
    10. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    11. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    12. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    13. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    14. Fu, Zhexi & Chow, Joseph Y.J., 2022. "The pickup and delivery problem with synchronized en-route transfers for microtransit planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    15. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    16. Karaoğlan, İsmail & Erdoğan, Güneş & Koç, Çağrı, 2018. "The Multi-Vehicle Probabilistic Covering Tour Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 278-287.
    17. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    18. Yildiz, Hakan & Ravi, R. & Fairey, Wayne, 2010. "Integrated optimization of customer and supplier logistics at Robert Bosch LLC," European Journal of Operational Research, Elsevier, vol. 207(1), pages 456-464, November.
    19. Rodríguez-Pereira, Jessica & Fernández, Elena & Laporte, Gilbert & Benavent, Enrique & Martínez-Sykora, Antonio, 2019. "The Steiner Traveling Salesman Problem and its extensions," European Journal of Operational Research, Elsevier, vol. 278(2), pages 615-628.
    20. Murakami, Keisuke, 2017. "A new model and approach to electric and diesel-powered vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 23-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:1:p:74-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.