IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i3p793-807.html
   My bibliography  Save this article

Allocation search methods for a generalized class of location-allocation problems

Author

Listed:
  • Bischoff, Martin
  • Dächert, Kerstin

Abstract

We consider a generalized class of location-allocation problems, in which N new facilities are to be located in the plane with respect to M objects. Each object is associated with a convex cost function, specifying the expenses for serving the object from any location in the plane. For the resulting multi-dimensional mixed-integer optimization problem, we compare various traditional and new search methods. In particular, we apply multi-start, (variable) neighborhood search, tabu search, simulated annealing, an evolutionary algorithm and an ant colony optimization algorithm. They all have in common that they use the well-known alternate location and allocation algorithm [Cooper, L., 1964. Heuristic methods for location-allocation problems. SIAM Review 6, 37-53] as core local search function. We intend to impart a generalized view on these randomized search methods and also examine the efficiency of the different search strategies in solving the multi-connection location-allocation problem, a relatively new instance of the generalized class of location-allocation problems. Computational results show that the most crucial feature of the heuristics is the ability to combine a diversified search over the whole solution space with an intensified search near the best-known solution.

Suggested Citation

  • Bischoff, Martin & Dächert, Kerstin, 2009. "Allocation search methods for a generalized class of location-allocation problems," European Journal of Operational Research, Elsevier, vol. 192(3), pages 793-807, February.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:3:p:793-807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01026-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosing, K. E., 1992. "An optimal method for solving the (generalized) multi-Weber problem," European Journal of Operational Research, Elsevier, vol. 58(3), pages 414-426, May.
    2. Simin Huang & Rajan Batta & Kathrin Klamroth & Rakesh Nagi, 2005. "The K-Connection Location Problem in a Plane," Annals of Operations Research, Springer, vol. 136(1), pages 193-209, April.
    3. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    4. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    5. A.T. Ernst & M. Krishnamoorthy, 1999. "Solution algorithms for the capacitated single allocation hub location problem," Annals of Operations Research, Springer, vol. 86(0), pages 141-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
    2. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdolsalam Ghaderi & Mohammad Jabalameli & Farnaz Barzinpour & Ragheb Rahmaniani, 2012. "An Efficient Hybrid Particle Swarm Optimization Algorithm for Solving the Uncapacitated Continuous Location-Allocation Problem," Networks and Spatial Economics, Springer, vol. 12(3), pages 421-439, September.
    2. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    3. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    4. Brimberg, Jack & Drezner, Zvi & Mladenović, Nenad & Salhi, Said, 2014. "A new local search for continuous location problems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 256-265.
    5. Liu, Yanchao, 2023. "An elliptical cover problem in drone delivery network design and its solution algorithms," European Journal of Operational Research, Elsevier, vol. 304(3), pages 912-925.
    6. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    7. N Aras & K C Özkısacık & İ K Altınel, 2006. "Solving the uncapacitated multi-facility Weber problem by vector quantization and self-organizing maps," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 82-93, January.
    8. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    9. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    10. Prahalad Venkateshan & Kamlesh Mathur, 2015. "A Heuristic for the Multisource Weber Problem with Service Level Constraints," Transportation Science, INFORMS, vol. 49(3), pages 472-483, August.
    11. S. Nobakhtian & A. Raeisi Dehkordi, 2018. "An algorithm for generalized constrained multi-source Weber problem with demand substations," 4OR, Springer, vol. 16(4), pages 343-377, December.
    12. İ K Altınel & N Aras & K C Özkısacık, 2011. "Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1813-1826, October.
    13. Canovas, Lazaro & Garcia, Sergio & Marin, Alfredo, 2007. "Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique," European Journal of Operational Research, Elsevier, vol. 179(3), pages 990-1007, June.
    14. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    15. Carrizosa, Emilio & Rodriguez-Chia, Antonio M., 1997. "Weber problems with alternative transportation systems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 87-93, February.
    16. G. Bergantiños & J. Vidal-Puga, 2020. "One-way and two-way cost allocation in hub network problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 199-234, March.
    17. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    18. Canbolat, Mustafa S. & Wesolowsky, George O., 2012. "On the use of the Varignon frame for single facility Weber problems in the presence of convex barriers," European Journal of Operational Research, Elsevier, vol. 217(2), pages 241-247.
    19. S Alumur & B Y Kara, 2009. "A hub covering network design problem for cargo applications in Turkey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1349-1359, October.
    20. Jayaswal, Sachin & Vidyarthi, Navneet, 2013. "Capacitated Multiple Allocation Hub Location with Service Level Constraints for Multiple Consignment Classes," IIMA Working Papers WP2013-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:3:p:793-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.