IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v170y2006i2p416-439.html
   My bibliography  Save this article

Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem

Author

Listed:
  • Peeters, Marc
  • Degraeve, Zeger

Abstract

No abstract is available for this item.

Suggested Citation

  • Peeters, Marc & Degraeve, Zeger, 2006. "Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 416-439, April.
  • Handle: RePEc:eee:ejores:v:170:y:2006:i:2:p:416-439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00540-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    2. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    3. Vanderbeck, F. & Wolsey, L. A., 1996. "An exact algorithm for IP column generation," LIDAM Reprints CORE 1242, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    6. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    8. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    9. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    10. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    11. Martin Desrochers & François Soumis, 1989. "A Column Generation Approach to the Urban Transit Crew Scheduling Problem," Transportation Science, INFORMS, vol. 23(1), pages 1-13, February.
    12. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    13. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    14. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    15. Zeger Degraeve & Marc Peeters, 2003. "Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 58-81, February.
    16. Zeger Degraeve & Linus Schrage, 1999. "Optimal Integer Solutions to Industrial Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 406-419, November.
    17. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinovic, J. & Scheithauer, G., 2016. "Integer linear programming models for the skiving stock problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 356-368.
    2. Rico Walter & Martin Wirth & Alexander Lawrinenko, 2017. "Improved approaches to the exact solution of the machine covering problem," Journal of Scheduling, Springer, vol. 20(2), pages 147-164, April.
    3. Walter, Rico & Lawrinenko, Alexander, 2017. "Lower bounds and algorithms for the minimum cardinality bin covering problem," European Journal of Operational Research, Elsevier, vol. 256(2), pages 392-403.
    4. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.
    5. John Martinovic & Guntram Scheithauer, 2016. "The proper relaxation and the proper gap of the skiving stock problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 527-548, December.
    6. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    7. Vadim M. Kartak & Artem V. Ripatti, 2019. "Large proper gaps in bin packing and dual bin packing problems," Journal of Global Optimization, Springer, vol. 74(3), pages 467-476, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    2. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    3. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.
    4. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    6. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    7. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    8. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    9. Dauylbayev, M.K. & Uaissov, B., 2020. "Integral boundary-value problem with initial jumps for a singularly perturbed system of integrodifferential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Afrouzi, G.A. & Moghaddam, M. Khaleghy, 2006. "Existence and multiplicity results for a class of p-Laplacian problems with Neumann–Robin boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 967-973.
    11. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    12. Mi, Ling & Liu, Bin, 2015. "Second order expansion for the solution to a singular Dirichlet problem," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 401-412.
    13. Marcelo Fernandes Furtado & Karla Carolina Vicente de Sousa, 2021. "Elliptic problems in the half-space with nonlinear critical boundary conditions," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-16, December.
    14. Zeger Degraeve & Marc Peeters, 2003. "Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 58-81, February.
    15. Masatoshi Sakawa & Hideki Katagiri, 2012. "Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 101-117, March.
    16. Marin, Liviu & Cipu, Corina, 2017. "Non-iterative regularized MFS solution of inverse boundary value problems in linear elasticity: A numerical study," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 265-286.
    17. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    18. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    19. Huisman, D. & Jans, R.F. & Peeters, M. & Wagelmans, A.P.M., 2003. "Combining Column Generation and Lagrangian Relaxation," ERIM Report Series Research in Management ERS-2003-092-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Tao Wu & Kerem Akartunal? & Raf Jans & Zhe Liang, 2017. "Progressive Selection Method for the Coupled Lot-Sizing and Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 523-543, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:170:y:2006:i:2:p:416-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.