IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v30y2024icp96-109.html
   My bibliography  Save this article

Exact Simulation of Max-Infinitely Divisible Processes

Author

Listed:
  • Zhong, Peng
  • Huser, Raphaël
  • Opitz, Thomas

Abstract

Max-infinitely divisible (max-id) processes play a central role in extreme-value theory and include the subclass of all max-stable processes. They allow for a constructive representation based on the pointwise maximum of random functions drawn from a Poisson point process defined on a suitable function space. Simulating from a max-id process is often difficult due to its complex stochastic structure, while calculating its joint density in high dimensions is often numerically infeasible. Therefore, exact and efficient simulation techniques for max-id processes are useful tools for studying the characteristics of the process and for drawing statistical inferences. Inspired by the simulation algorithms for max-stable processes, theory and algorithms to generalize simulation approaches tailored for certain flexible (existing or new) classes of max-id processes are presented. Efficient simulation for a large class of models can be achieved by implementing an adaptive rejection sampling scheme to sidestep a numerical integration step in the algorithm. The results of a simulation study highlight that our simulation algorithm works as expected and is highly accurate and efficient, such that it clearly outperforms customary approximate sampling schemes. As a by-product, new max-id models, which can be represented as pointwise maxima of general location-scale mixtures and possess flexible tail dependence structures capturing a wide range of asymptotic dependence scenarios, are also developed.

Suggested Citation

  • Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
  • Handle: RePEc:eee:ecosta:v:30:y:2024:i:c:p:96-109
    DOI: 10.1016/j.ecosta.2022.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000156
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:30:y:2024:i:c:p:96-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.