IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v435y2020ics0304380020303185.html
   My bibliography  Save this article

The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest

Author

Listed:
  • Zhang, Minxia
  • Chen, Shulin
  • Jiang, Hong
  • Peng, Changhui
  • Zhang, Jinmeng
  • Zhou, Guomo

Abstract

The study of carbon sequestration capacity under intensive management (IM)11IM, intensive management; NIM, non-intensive management; NEP, net ecosystem production; NPP, net primary productivity; GPP, gross primary productivity; EC, eddy covariance; A, the net CO2 assimilation rate for leaf; Vc, Rubisco-limited gross photosynthetic rate; Vj, light-limited gross photosynthesis rate; gs, stomatal conductance; Rd, leaf dark respiration; Acanopy, net CO2 assimilation rates in the canopy; LAI, leaf area index; Rd, leaf dark respiration; Re, ecosystem respiration; Ra, autotrophic respiration; Rm, maintain respiration; Rh, heterotrophic respiration ; Ta_7m, air temperature at 7 m above the ground; Ts_5cm, soil temperature at 5 cm below the ground; rh, relative humidity; vpd, vapor pressure deficit; PPFD, photosynthetic photon flux density measures (such as cutting, thinning, plowing, and fertilization) has become a major issue of carbon budgets in the context of global climate change. Bamboo forest, also known as “the second largest forest in the world,” plays an important role in the carbon cycle. Due to its high economic value, IM practices have been widely used to manage bamboo forests, which in turn may affect the global carbon cycle and carbon budget balance of the ecosystem. However, due to a lack of long-term field experiments and suitable representative models for carbon cycle research in bamboo forests, there is little understanding of the effects of IM measures on carbon sources/sinks in bamboo forest ecosystems at large temporal scales. In this study, we used a representative Lei bamboo (Phyllostachys praecox C.D. Chu & C.S. Chao) forest occurring in Taihuyuan town, Zhejiang Province, China as the study object and a new generation Triplex-Flux model to simulate the net ecosystem productivity (NEP) and net primary productivity (NPP) of the Lei bamboo forest under IM and non­intensive management (NIM) in 2011–2013 and 2015. The aim was to reveal the impact of IM on the carbon cycle of a bamboo forest ecosystem. The results showed that the Triplex-Flux model was suitable for studying the carbon cycle in the Lei bamboo forest. On a 30 min time scale, R2 values ranged between 0.78–0.91 (p<0.01) and the RMSE varied between 0.04–0.09 gC m−1. On a daily scale, the model was also able to simulate the NEP of the Lei bamboo forest (R2>0.42, p<0.001). However, the Triplex-Flux model failed to reveal the NEP patterns, as there were certain deviations between some of the simulated NEP peak and valley values, which were underestimated at noon and overestimated at night. IM played a key role in controlling carbon budget of the Lei bamboo forest. On a seasonal scale, the effect of IM measures was the most significant in spring; harvesting old bamboo wood and removing new shoots caused a 27.71% and 58.52% decrease in NEP and NPP, respectively. Hooking tips and trimming diseased branches had little impact on NEP and NPP (0.02% and 7.27%, respectively) in autumn. On an annual scale, IM measures resulted in average annual decrease in NEP and NPP by 27.20% and 13.72%, respectively. Our findings can provide a reference base that may be applicable to studying the carbon cycle in bamboo forests across the country and even at larger scales.

Suggested Citation

  • Zhang, Minxia & Chen, Shulin & Jiang, Hong & Peng, Changhui & Zhang, Jinmeng & Zhou, Guomo, 2020. "The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest," Ecological Modelling, Elsevier, vol. 435(C).
  • Handle: RePEc:eee:ecomod:v:435:y:2020:i:c:s0304380020303185
    DOI: 10.1016/j.ecolmodel.2020.109248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020303185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xiaolu & Peng, Changhui & Dang, Qing-Lai & Sun, Jianfeng & Wu, Haibin & Hua, Dong, 2008. "Simulating carbon exchange in Canadian Boreal forests," Ecological Modelling, Elsevier, vol. 219(3), pages 287-299.
    2. Sun, Jianfeng & Peng, Changhui & McCaughey, Harry & Zhou, Xiaolu & Thomas, Valerie & Berninger, Frank & St-Onge, Benoît. & Hua, Dong, 2008. "Simulating carbon exchange of Canadian boreal forests," Ecological Modelling, Elsevier, vol. 219(3), pages 276-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaoling Li & Aibo Li & Zhiyuan Huang & Zheke Zhong & Fangyuan Bian & Xiaoping Zhang, 2022. "Effects of Long-Term Chemical and Organic Fertilizer Application on Soil Phosphorus Fractions in Lei Bamboo Plantations," Sustainability, MDPI, vol. 14(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    2. Podur, Justin & Wotton, Michael, 2010. "Will climate change overwhelm fire management capacity?," Ecological Modelling, Elsevier, vol. 221(9), pages 1301-1309.
    3. Wang, Z. & Grant, R.F. & Arain, M.A. & Bernier, P.Y. & Chen, B. & Chen, J.M. & Govind, A. & Guindon, L. & Kurz, W.A. & Peng, C. & Price, D.T. & Stinson, G. & Sun, J. & Trofymowe, J.A. & Yeluripati, J., 2013. "Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results," Ecological Modelling, Elsevier, vol. 260(C), pages 25-35.
    4. Wen, Xuding & Zhao, Zhonghui & Deng, Xiangwen & Xiang, Wenhua & Tian, Dalun & Yan, Wende & Zhou, Xiaolu & Peng, Changhui, 2014. "Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China," Ecological Modelling, Elsevier, vol. 294(C), pages 19-26.
    5. Wang, Weifeng & Peng, Changhui & Zhang, S.Y. & Zhou, Xiaolu & Larocque, Guy R. & Kneeshaw, Daniel D. & Lei, Xiangdong, 2011. "Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning," Ecological Modelling, Elsevier, vol. 222(14), pages 2249-2261.
    6. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:435:y:2020:i:c:s0304380020303185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.