IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v319y2016icp137-146.html
   My bibliography  Save this article

Modelling antibiotics transport in a waste stabilization pond system in Tanzania

Author

Listed:
  • Møller, Cathrine Christmas
  • Weisser, Johan J.
  • Msigala, Sijaona
  • Mdegela, Robinson
  • Jørgensen, Sven Erik
  • Styrishave, Bjarne

Abstract

Antibiotics in wastewater have become a growing problem in urban and peri-urban areas in developing countries as a result of increased use and misuse of antibiotics. A simple dynamic model, that describes the most important removal processes of antibiotic from the wastewater stabilization pond system (WSP) “Mafisa” in Morogoro, Tanzania, was developed using STELLA® software package. The model was based on liquid chromatography tandem mass spectrometry (LCMS/MS) analysis of trimethoprim, in water collected in the WSP. Concentrations of trimethoprim measured in the dry season and the rainy season were used in development of the model. To determine the model's applicability to simulate the removal of trimethoprim, a calibration was performed using concentrations from the dry season and a validation was performed using concentrations from the rainy season. To test the model's capacity to simulate the removal of other antibiotics than trimethoprim, a second validation was performed for three other antibiotics; metronidazole, sulfamethoxazole and ciprofloxacin. A two-tailed t-test with a confidence interval of 95% showed no significant difference (P=0.7819) between the values given by the model (CSIM) and the values measured by LCMS/MS (COBS) of the first validation, and the standard deviation (SD) between the differences was 1%. The second validation gave a mean SD=18% (found by a two-tailed t-test with a confidence interval of 95%) of the differences between CSIM and COBS. The model was developed under the assumption that settling, biodegradation, hydrolysis and photolysis were the only removal processes other than outlet. The major removal processes for trimethoprim and sulfamethoxazole were through settling and the outlet. Ciprofloxacin was removed by settling in the first pond. Metronidazole was mainly removed through the outlet, but settling and hydrolysis/photolysis also played a role. A sensitivity analysis (±10%) showed that the soil adsorption coefficient, the amount of suspended matter and the ratio of flow rate and volume were the most sensitive parameters. To strengthen the model, the exact removal processes should be further analysed. To apply the model on other WSP, a calibration of the settling rate constant and the amount of suspended matter should be performed.

Suggested Citation

  • Møller, Cathrine Christmas & Weisser, Johan J. & Msigala, Sijaona & Mdegela, Robinson & Jørgensen, Sven Erik & Styrishave, Bjarne, 2016. "Modelling antibiotics transport in a waste stabilization pond system in Tanzania," Ecological Modelling, Elsevier, vol. 319(C), pages 137-146.
  • Handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:137-146
    DOI: 10.1016/j.ecolmodel.2015.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015004391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussnain Mukhtar & Yu-Pin Lin & Oleg V. Shipin & Joy R. Petway, 2017. "Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC," IJERPH, MDPI, vol. 14(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:137-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.