IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp32-43.html
   My bibliography  Save this article

Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model

Author

Listed:
  • Giacomini, Henrique C.
  • DeAngelis, Donald L.
  • Trexler, Joel C.
  • Petrere, Miguel

Abstract

Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.

Suggested Citation

  • Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:32-43
    DOI: 10.1016/j.ecolmodel.2012.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacomini, Henrique Corrêa & De Marco, Paulo & Petrere, Miguel, 2009. "Exploring community assembly through an individual-based model for trophic interactions," Ecological Modelling, Elsevier, vol. 220(1), pages 23-39.
    2. J. Ylikarjula & M. Heino & U. Dieckmann, 1999. "Ecology and Adaptation of Stunted Growth in Fish," Working Papers ir99050, International Institute for Applied Systems Analysis.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    2. Fujiwara, Masami, 2016. "Incorporating demographic diversity into food web models: Effects on community structure and dynamics," Ecological Modelling, Elsevier, vol. 322(C), pages 10-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    2. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    3. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    4. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    5. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    6. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    7. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    8. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    9. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    10. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    11. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    12. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    13. Carl‐Johan Dalgaard & Holger Strulik, 2016. "Physiology and Development: Why the West is Taller Than the Rest," Economic Journal, Royal Economic Society, vol. 126(598), pages 2292-2323, December.
    14. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    15. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    16. Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
    17. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    18. Annette Baudisch, 2009. "How ageing is shaped by trade-offs," MPIDR Working Papers WP-2009-043, Max Planck Institute for Demographic Research, Rostock, Germany.
    19. Akihiro Manabe & Takashi Yamakawa & Shuhei Ohnishi & Tatsuro Akamine & Yoji Narimatsu & Hiroshige Tanaka & Tetsuichiro Funamoto & Yuji Ueda & Takeo Yamamoto, 2018. "A novel growth function incorporating the effects of reproductive energy allocation," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.
    20. James W. Vaupel & Trifon I. Missov & Jessica Metcalf, 2008. "Optimal semelparity," MPIDR Working Papers WP-2008-012, Max Planck Institute for Demographic Research, Rostock, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:32-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.