IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i6p857-866.html
   My bibliography  Save this article

Formulation and testing of a novel river nitrification model

Author

Listed:
  • Pauer, James J.
  • Auer, Martin T.

Abstract

The nitrification process in many river water quality models has been approximated by a simple first order dependency on the water column ammonia concentration, while the benthic contribution has routinely been neglected. In this study a mathematical framework was developed for sediment bed nitrification based on mass transfer theory and Monod bacterial growth kinetics. The model describes ammonia transport across the boundary layer and consumption within the biofilm to quantify the overall nitrification flux. Model results suggest that nitrification is usually controlled by the boundary layer thickness, and we estimated a nitrification velocity range between 0.14 and 0.97md−1, assuming typical boundary thicknesses of 0.1–1.0mm. These ranges compared favorably with reported literature values, including our own measurements. The model was applied to several river systems of different depths where nitrification rates and river depths were available. Assuming that nitrification is exclusively a benthic process, the average velocity of all the rivers evaluated was 0.85md−1 (r2=0.72).

Suggested Citation

  • Pauer, James J. & Auer, Martin T., 2009. "Formulation and testing of a novel river nitrification model," Ecological Modelling, Elsevier, vol. 220(6), pages 857-866.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:857-866
    DOI: 10.1016/j.ecolmodel.2008.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008005929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kannel, Prakash Raj & Lee, S. & Lee, Y.-S. & Kanel, S.R. & Pelletier, G.J., 2007. "Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal," Ecological Modelling, Elsevier, vol. 202(3), pages 503-517.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samara Soares & Joel Vasco & Paulo Scalize, 2023. "Water Quality Simulation in the Bois River, Goiás, Central Brazil," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Zhuohang Xin & Lei Ye & Chi Zhang, 2019. "Application of Export Coefficient Model and QUAL2K for Water Environmental Management in a Rural Watershed," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    3. Holguin-Gonzalez, Javier E. & Boets, Pieter & Alvarado, Andres & Cisneros, Felipe & Carrasco, María C. & Wyseure, Guido & Nopens, Ingmar & Goethals, Peter L.M., 2013. "Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador," Ecological Modelling, Elsevier, vol. 254(C), pages 1-14.
    4. Muhammad Mazhar Iqbal & Muhammad Shoaib & Hafiz Umar Farid & Jung Lyul Lee, 2018. "Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia," IJERPH, MDPI, vol. 15(10), pages 1-26, October.
    5. Nguyen Hong Duc & Ram Avtar & Pankaj Kumar & Pham Phuong Lan, 2021. "Scenario-based numerical simulation to predict future water quality for developing robust water management plan: a case study from the Hau River, Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-38, October.
    6. Ruibin Zhang & Xin Qian & Wenting Zhu & Hailong Gao & Wei Hu & Jinhua Wang, 2014. "Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China," IJERPH, MDPI, vol. 11(9), pages 1-19, September.
    7. Zelalem Abera Angello & Beshah M. Behailu & Jens Tränckner, 2020. "Integral Application of Chemical Mass Balance and Watershed Model to Estimate Point and Nonpoint Source Pollutant Loads in Data-Scarce Little Akaki River, Ethiopia," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    8. Pavitra Kumar & Sai Hin Lai & Jee Khai Wong & Nuruol Syuhadaa Mohd & Md Rowshon Kamal & Haitham Abdulmohsin Afan & Ali Najah Ahmed & Mohsen Sherif & Ahmed Sefelnasr & Ahmed El-Shafie, 2020. "Review of Nitrogen Compounds Prediction in Water Bodies Using Artificial Neural Networks and Other Models," Sustainability, MDPI, vol. 12(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:857-866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.