IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i19p2481-2490.html
   My bibliography  Save this article

Probabilistic movement model with emigration simulates movements of deer in Nebraska, 1990–2006

Author

Listed:
  • Frost, Charles J.
  • Hygnstrom, Scott E.
  • Tyre, Andrew J.
  • Eskridge, Kent M.
  • Baasch, David M.
  • Boner, Justin R.
  • Clements, Gregory M.
  • Gilsdorf, Jason M.
  • Kinsell, Travis C.
  • Vercauteren, Kurt C.

Abstract

Movements of deer can affect population dynamics, spatial redistribution, and transmission and spread of diseases. Our goal was to model the movement of deer in Nebraska in an attempt to predict the potential for spread of chronic wasting disease (CWD) into eastern Nebraska. We collared and radio-tracked >600 white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) in Nebraska during 1990–2006. We observed large displacements (>10km) for both species and sexes of deer, including migrations up to 100km and dispersals up to 50km. Average distance traveled between successive daily locations was 166m for male and 173 for female deer in eastern Nebraska, and 427m for male and 459 for female deer in western Nebraska. Average daily displacement from initial capture point was 10m for male and 14m for female deer in eastern Nebraska, and 27m for male and 28m for female deer in western Nebraska. We used these data on naturally occurring movements to create and test 6 individual-based models of movement for white-tailed deer and mule deer in Nebraska, including models that incorporated sampling from empirical distributions of movement lengths and turn angles (DIST), correlated random walks (CRW), home point fidelity (FOCUS), shifting home point (SHIFT), probabilistic movement acceptance (MOVE), and probabilistic movement with emigration (MOVEwEMI). We created models in sequence in an attempt to account for the shortcomings of the previous model(s). We used the Kolmogrov–Smirnov goodness-of-fit test to verify improvement of simulated annual displacement distributions to empirical displacement distributions. The best-fit model (D=0.07 and 0.08 for eastern and western Nebraska, respectively) included a probabilistic movement chance with emigration (MOVEwEMI) and resulted in an optimal daily movement length of 350m (maximum daily movement length of 2800m for emigrators) for eastern Nebraska and 370m (maximum of 2960m) for western Nebraska. The proportion of deer that moved as emigrators was 0.10 and 0.13 for eastern and western Nebraska, respectively. We propose that the observed spread of CWD may be driven by large movements of a small proportion of deer that help to establish a low prevalence of the disease in areas east of the current endemic area. Our movement models will be used in a larger individual-based simulation of movement, survival, and transmission of CWD to help determine future surveillance and management actions.

Suggested Citation

  • Frost, Charles J. & Hygnstrom, Scott E. & Tyre, Andrew J. & Eskridge, Kent M. & Baasch, David M. & Boner, Justin R. & Clements, Gregory M. & Gilsdorf, Jason M. & Kinsell, Travis C. & Vercauteren, Kurt, 2009. "Probabilistic movement model with emigration simulates movements of deer in Nebraska, 1990–2006," Ecological Modelling, Elsevier, vol. 220(19), pages 2481-2490.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2481-2490
    DOI: 10.1016/j.ecolmodel.2009.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyre, Andrew & Kerr, Gregory D. & Tenhumberg, Brigitte & Bull, C. Michael, 2007. "Identifying mechanistic models of spatial behaviour using pattern-based modelling: An example from lizard home ranges," Ecological Modelling, Elsevier, vol. 208(2), pages 307-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Mário & Bastos, Rita & Cabral, João Alexandre, 2013. "Converting conventional ecological datasets in dynamic and dynamic spatially explicit simulations: Current advances and future applications of the Stochastic Dynamic Methodology (StDM)," Ecological Modelling, Elsevier, vol. 258(C), pages 91-100.
    2. Girard, Philippe & Parrott, Lael & Caron, Charles-André & Green, David M., 2015. "Effects of temperature and surface water availability on spatiotemporal dynamics of stream salamanders using pattern-oriented modelling," Ecological Modelling, Elsevier, vol. 296(C), pages 12-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2481-2490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.