IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v116y2022ics0264999322002395.html
   My bibliography  Save this article

The impact of COVID-19 on commodity options market: Evidence from China

Author

Listed:
  • Chen, Jilong
  • Xu, Liao
  • Xu, Hao

Abstract

Considering the severe economic impact of COVID-19, this study examines COVID-19's influence on the Chinese commodity market. The literature shows that COVID-19's influence in China during its abatement period has not been well investigated. We address this issue by the intraday analysis of the volatility from 16 commodity options contracts in the Chinese commodity options market over the period 2019–2021. We demonstrate that while the pandemic eased in China after its initial outbreak, it still significantly affected the volatility of Chinese agricultural commodities options. In contrast, its impacts on the volatility of options for petrochemicals, ores, and metals are negligible. This pattern reflects the role of pandemic-led supply disruptions affecting agricultural commodity prices as necessities, contributing to higher price volatility relative to non-agricultural commodities, which are less volatile.

Suggested Citation

  • Chen, Jilong & Xu, Liao & Xu, Hao, 2022. "The impact of COVID-19 on commodity options market: Evidence from China," Economic Modelling, Elsevier, vol. 116(C).
  • Handle: RePEc:eee:ecmode:v:116:y:2022:i:c:s0264999322002395
    DOI: 10.1016/j.econmod.2022.105998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999322002395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2022.105998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    2. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    3. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    4. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    5. Joseph, Anto & Sisodia, Garima & Tiwari, Aviral Kumar, 2014. "A frequency domain causality investigation between futures and spot prices of Indian commodity markets," Economic Modelling, Elsevier, vol. 40(C), pages 250-258.
    6. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    7. Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market instability and technical trading at high frequency: Evidence from NASDAQ stocks," Economic Modelling, Elsevier, vol. 102(C).
    8. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    9. Liang, Chao & Ma, Feng & Li, Ziyang & Li, Yan, 2020. "Which types of commodity price information are more useful for predicting US stock market volatility?," Economic Modelling, Elsevier, vol. 93(C), pages 642-650.
    10. Chen, Jilong & Ewald, Christian-Oliver, 2017. "Pricing commodity futures options in the Schwartz multi factor model with stochastic volatility: An asymptotic method," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 144-151.
    11. Xu, Yahua & Xiao, Jun & Zhang, Liguo, 2020. "Global predictive power of the upside and downside variances of the U.S. equity market," Economic Modelling, Elsevier, vol. 93(C), pages 605-619.
    12. Allen, David E. & McAleer, Michael & Scharth, Marcel, 2011. "Monte Carlo option pricing with asymmetric realized volatility dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1247-1256.
    13. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    14. Yow-Jen Jou & Chih-Wei Wang & Wan-Chien Chiu, 2013. "Is the realized volatility good for option pricing during the recent financial crisis?," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 171-188, January.
    15. Wen, Danyan & Wang, Yudong & Zhang, Yaojie, 2021. "Intraday return predictability in China’s crude oil futures market: New evidence from a unique trading mechanism," Economic Modelling, Elsevier, vol. 96(C), pages 209-219.
    16. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    17. Souza, Rodrigo da Silva & Fry-McKibbin, Renée, 2021. "Global liquidity and commodity market interactions: Macroeconomic effects on a commodity exporting emerging market," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 781-800.
    18. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klose, Jens, 2023. "European exchange rate adjustments in response to COVID-19, containment measures and stabilization policies," Economic Modelling, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2021. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Papers 2112.05302, arXiv.org.
    2. Qi Wang & Zerong Wang, 2021. "VIX futures and its closed‐form pricing through an affine GARCH model with realized variance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 135-156, January.
    3. Gaoxiu Qiao & Gongyue Jiang, 2023. "VIX futures pricing based on high‐frequency VIX: A hybrid approach combining SVR with parametric models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1238-1260, September.
    4. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.
    5. Tianyi Wang & Sicong Cheng & Fangsheng Yin & Mei Yu, 2022. "Overnight volatility, realized volatility, and option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1264-1283, July.
    6. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    9. Fang Liang & Lingshan Du & Zhuo Huang, 2023. "Option pricing with overnight and intraday volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1576-1614, November.
    10. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    11. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    12. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    13. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2022. "Option pricing with state‐dependent pricing kernel," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1409-1433, August.
    14. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    15. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    17. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    18. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Oct 2022.
    19. Fangsheng Yin & Yang Bian & Tianyi Wang, 2021. "A short cut: Directly pricing VIX futures with discrete‐time long memory model and asymmetric jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 458-477, April.
    20. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.

    More about this item

    Keywords

    COVID-19; Commodity options; High-frequency data; Realized volatility;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:116:y:2022:i:c:s0264999322002395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.