IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v89y2015icp172-191.html
   My bibliography  Save this article

Fast goodness-of-fit tests based on the characteristic function

Author

Listed:
  • Jiménez-Gamero, M. Dolores
  • Kim, Hyoung-Moon

Abstract

A class of goodness-of-fit tests whose test statistic is an L2 norm of the difference of the empirical characteristic function of the sample and a parametric estimate of the characteristic function in the null hypothesis, is considered. The null distribution is usually estimated through a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters or the dimension of the data increase. It is proposed to approximate the null distribution through a weighted bootstrap. The method is studied both theoretically and numerically. It provides a consistent estimator of the null distribution. In the numerical examples carried out, the estimated type I errors are close to the nominal values. The asymptotic properties are similar to those of the parametric bootstrap but, from a computational point of view, it is more efficient.

Suggested Citation

  • Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
  • Handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:172-191
    DOI: 10.1016/j.csda.2015.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000845
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    2. Muneya Matsui & Akimichi Takemura, 2008. "Goodness-of-fit tests for symmetric stable distributions—Empirical characteristic function approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 546-566, November.
    3. Muneya Matsui & Akimichi Takemura, 2005. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 183-199, March.
    4. Dehling, H. & Mikosch, T., 1994. "Random Quadratic Forms and the Bootstrap for U-Statistics," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 392-413, November.
    5. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    7. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    8. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    9. Klar, Bernhard & Meintanis, Simos G., 2005. "Tests for normal mixtures based on the empirical characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 227-242, April.
    10. Kundu, Subrata & Majumdar, Suman & Mukherjee, Kanchan, 2000. "Central Limit Theorems revisited," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 265-275, April.
    11. Burke, Murray D., 2000. "Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 13-20, January.
    12. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    13. T.W. Epps, 2005. "Tests for location-scale families based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(1), pages 99-114, September.
    14. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. D. Jiménez-Gamero & A. Batsidis, 2017. "Minimum distance estimators for count data based on the probability generating function with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 503-545, July.
    2. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2021. "A test for the geometric distribution based on linear regression of order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 103-123.
    3. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    4. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.
    5. Elizabeth González-Estrada & José A. Villaseñor & Rocío Acosta-Pech, 2022. "Shapiro-Wilk test for multivariate skew-normality," Computational Statistics, Springer, vol. 37(4), pages 1985-2001, September.
    6. Kim, SungBum & Kim, Hyoung-Moon, 2022. "Series form of the characteristic functions of scale mixtures of multivariate skew-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 172-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
    2. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    3. Alba Fernández, M.V. & Jiménez Gamero, M.D. & Castillo Gutiérrez, S., 2014. "Approximating a class of goodness-of-fit test statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 24-38.
    4. M. D. Jiménez-Gamero & A. Batsidis, 2017. "Minimum distance estimators for count data based on the probability generating function with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 503-545, July.
    5. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    6. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    7. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    8. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    9. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.
    10. Leucht, Anne & Neumann, Michael H., 2009. "Consistency of general bootstrap methods for degenerate U-type and V-type statistics," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1622-1633, September.
    11. L. Baringhaus & D. Kolbe, 2015. "Two-sample tests based on empirical Hankel transforms," Statistical Papers, Springer, vol. 56(3), pages 597-617, August.
    12. M. Jiménez-Gamero & A. Batsidis & M. Alba-Fernández, 2016. "Fourier methods for model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 105-133, February.
    13. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    14. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    15. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    16. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    17. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    18. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    19. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    20. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:172-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.