Advanced Search
MyIDEAS: Login to save this article or follow this journal

An EM algorithm for the proportional hazards model with doubly censored data

Contents:

Author Info

  • Kim, Yongdai
  • Kim, Joungyoun
  • Jang, Woncheol
Registered author(s):

    Abstract

    In this paper, we consider a new procedure for estimating parameters in the proportional hazards model with doubly censored data. Computing the maximum likelihood estimator with doubly censored data is often nontrivial and requires a certain constraint optimization procedure, which is computationally unstable and sometimes fails to converge. We propose an approximated likelihood and study the maximum approximated likelihood estimator, which is obtained by maximizing the approximated likelihood. In comparison to the maximum likelihood estimator, this new estimator is stable and always converges with an efficient EM algorithm we develop. The stability of the new estimator even with moderate sample sizes is amply demonstrated through simulated and real data. For theoretical justification of the approximated likelihood, we show the consistency of the maximum approximated likelihood estimator.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002411
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 57 (2013)
    Issue (Month): 1 ()
    Pages: 41-51

    as in new window
    Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:41-51

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Doubly censored data; EM algorithm; Proportional hazards model;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Jong S. Kim, 2003. "Maximum likelihood estimation for the proportional hazards model with partly interval-censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 489-502.
    2. Kim, Yongdai & Kim, Bumsoo & Jang, Woncheol, 2010. "Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1339-1351, July.
    3. T. Cai, 2004. "Semiparametric regression analysis for doubly censored data," Biometrika, Biometrika Trust, vol. 91(2), pages 277-290, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Xu, Wenjing & Pan, Qing & Gastwirth, Joseph L., 2014. "Cox proportional hazards models with frailty for negatively correlated employment processes," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 295-307.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:41-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.