Advanced Search
MyIDEAS: Login

Fitting very large sparse Gaussian graphical models


Author Info

  • Kiiveri, Harri
  • de Hoog, Frank
Registered author(s):


    In this paper we consider some methods for the maximum likelihood estimation of sparse Gaussian graphical (covariance selection) models when the number of variables is very large (tens of thousands or more). We present a procedure for determining the pattern of zeros in the model and we discuss the use of limited memory quasi-Newton algorithms and truncated Newton algorithms to fit the model by maximum likelihood. We present efficient ways of computing the gradients and likelihood function values for such models suitable for a desktop computer. For the truncated Newton method we also present an efficient way of computing the action of the Hessian matrix on an arbitrary vector which does not require the computation and storage of the Hessian matrix. The methods are illustrated and compared on simulated data and applied to a real microarray data set.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 9 ()
    Pages: 2626-2636

    as in new window
    Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2626-2636

    Contact details of provider:
    Web page:

    Related research

    Keywords: Covariance selection; Gene networks; Graphical models; High dimensional; Large scale optimisation; Limited memory quasi-Newton;


    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2626-2636. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.