IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v192y2024ics0167947323002128.html
   My bibliography  Save this article

Multi-block alternating direction method of multipliers for ultrahigh dimensional quantile fused regression

Author

Listed:
  • Wu, Xiaofei
  • Ming, Hao
  • Zhang, Zhimin
  • Cui, Zhenyu

Abstract

In this paper, we consider a quantile fused LASSO regression model that combines quantile regression loss with the fused LASSO penalty. Intuitively, this model offers robustness to outliers, thanks to the quantile regression, while also effectively recovering sparse and block coefficients through the fused LASSO penalty. To adapt our proposed method for ultrahigh dimensional datasets, we introduce an iterative algorithm based on the multi-block alternating direction method of multipliers (ADMM). Moreover, we demonstrate the global convergence of the algorithm and derive comparable convergence rates. Importantly, our ADMM algorithm can be easily applied to solve various existing fused LASSO models. In terms of theoretical analysis, we establish that the quantile fused LASSO can achieve near oracle properties with a practical penalty parameter, and additionally, it possesses a sure screening property under a wide class of error distributions. The numerical experimental results support our claims, showing that the quantile fused LASSO outperforms existing fused regression models in robustness, particularly under heavy-tailed distributions.

Suggested Citation

  • Wu, Xiaofei & Ming, Hao & Zhang, Zhimin & Cui, Zhenyu, 2024. "Multi-block alternating direction method of multipliers for ultrahigh dimensional quantile fused regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002128
    DOI: 10.1016/j.csda.2023.107901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002128
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.