Advanced Search
MyIDEAS: Login to save this article or follow this journal

The feasible set algorithm for least median of squares regression


Author Info

  • Hawkins, Douglas M.
Registered author(s):


    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 16 (1993)
    Issue (Month): 1 (June)
    Pages: 81-101

    as in new window
    Handle: RePEc:eee:csdana:v:16:y:1993:i:1:p:81-101

    Contact details of provider:
    Web page:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Maronna, Ricardo A. & Barrera, Matías Salibian & Yohai, Víctor J., 2000. "Improving bias-robustness of regression estimates through projections," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 149-158, April.
    2. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    3. Mount, David M. & Netanyahu, Nathan S. & Romanik, Kathleen & Silverman, Ruth & Wu, Angela Y., 2007. "A practical approximation algorithm for the LMS line estimator," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2461-2486, February.
    4. Bradu, Dan & Hawkins, Douglas M., 1995. "An Anscombe type robust regression statistic," Computational Statistics & Data Analysis, Elsevier, vol. 20(4), pages 355-386, October.
    5. Marco Cattaneo & Andrea Wiencierz, 2014. "On the implementation of LIR: the case of simple linear regression with interval data," Computational Statistics, Springer, vol. 29(3), pages 743-767, June.
    6. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    7. Neath, Andrew A. & Cavanaugh, Joseph E., 2000. "A regression model selection criterion based on bootstrap bumping for use with resistant fitting," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 155-169, December.
    8. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    10. Li, Lei M., 2005. "An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 717-734, April.
    11. Hawkins, Douglas M., 1995. "Convergence of the feasible solution algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 519-538, May.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:16:y:1993:i:1:p:81-101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.