IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v154y2021ics0167947320301845.html
   My bibliography  Save this article

A general robust t-process regression model

Author

Listed:
  • Wang, Zhanfeng
  • Noh, Maengseok
  • Lee, Youngjo
  • Shi, Jian Qing

Abstract

The Gaussian process regression (GPR) model is well-known to be susceptible to outliers. Robust process regression models based on t-process or other heavy-tailed processes have been developed to address the problem. However, due to the current definitions of heavy-tailed processes, the unknown process regression function and the random errors are always defined jointly. This definition, mainly owing to mix-up of the regression function modeling and the distribution of the random errors, is not justified in many practical problems and thus limits the application of those robust approaches. It also results in a limitation of the statistical properties and robust analysis. A general robust process regression model is proposed by separating the nonparametric regression model from the distribution assumption of the random error. An efficient estimation procedure is developed. It shows that the estimated random-effects are useful in detecting outlying curves. Statistical properties, such as unbiasedness and information consistency, are provided. Numerical studies show that the proposed method is robust against outliers and outlying curves, and has a better performance in prediction compared with the existing models.

Suggested Citation

  • Wang, Zhanfeng & Noh, Maengseok & Lee, Youngjo & Shi, Jian Qing, 2021. "A general robust t-process regression model," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:csdana:v:154:y:2021:i:c:s0167947320301845
    DOI: 10.1016/j.csda.2020.107093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301845
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Wang & Jian Qing Shi, 2014. "Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1123-1133, September.
    2. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    3. Lee Youngjo & Gwangsu Kim, 2020. "Properties of h‐Likelihood Estimators in Clustered Data," International Statistical Review, International Statistical Institute, vol. 88(2), pages 380-395, August.
    4. Choi, Taeryon & Schervish, Mark J., 2007. "On posterior consistency in nonparametric regression problems," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1969-1987, November.
    5. J. Q. Shi & B. Wang & R. Murray-Smith & D. M. Titterington, 2007. "Gaussian Process Functional Regression Modeling for Batch Data," Biometrics, The International Biometric Society, vol. 63(3), pages 714-723, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Heng & Choi, Taeryon & Meng, Jie & Jo, Seongil, 2016. "Posterior convergence for Bayesian functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 27-41.
    2. Wang, Bo & Xu, Aiping, 2019. "Gaussian process methods for nonparametric functional regression with mixed predictors," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 80-90.
    3. G. Yi & J. Q. Shi & T. Choi, 2011. "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1285-1294, December.
    4. Junshu Bao & Timothy Hanson & Garnett P. McMillan & Kristin Knight, 2017. "Assessment of DPOAE test-retest difference curves via hierarchical Gaussian processes," Biometrics, The International Biometric Society, vol. 73(1), pages 334-343, March.
    5. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    6. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    7. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    8. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    9. Rabindra Nath Das & Jeong-Soo Park, 2012. "Discrepancy in regression estimates between log-normal and gamma: some case studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 97-111, March.
    10. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    11. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    12. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    13. Chengxin Gong & Jinwen Ma, 2023. "Automated Model Selection of the Two-Layer Mixtures of Gaussian Process Functional Regressions for Curve Clustering and Prediction," Mathematics, MDPI, vol. 11(12), pages 1-25, June.
    14. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    15. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    16. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    17. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    18. Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
    19. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    20. Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:154:y:2021:i:c:s0167947320301845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.