IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v112y2017icp129-144.html
   My bibliography  Save this article

A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data

Author

Listed:
  • Lv, Jing
  • Guo, Chaohui
  • Yang, Hu
  • Li, Yalian

Abstract

It is well known that the composite quantile regression is a very useful tool for regression analysis. In longitudinal studies, it requires a correct specification of the covariance structure to obtain efficient estimation of the regression coefficients. However, it is a challenging task to specify the correlation matrix in composite quantile regression with longitudinal data. In this paper, we develop a new regression model to parameterize covariance structures by utilizing the modified Cholesky decomposition. Then, based on the estimated covariance matrix, efficient composite quantile estimating functions are constructed to produce more efficient estimates. Since the proposed estimating functions are discrete and non-convex, we apply the induced smoothing approach to achieve fast and accurate estimation of the regression coefficients. Furthermore, we derive the asymptotic distributions of the parameter estimations both in mean and covariance models. Finally, simulations and a real data analysis have demonstrated the robustness and efficiency of the proposed approach.

Suggested Citation

  • Lv, Jing & Guo, Chaohui & Yang, Hu & Li, Yalian, 2017. "A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 129-144.
  • Handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:129-144
    DOI: 10.1016/j.csda.2017.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300567
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    2. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    3. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    4. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    5. Leng, Chenlei & Zhang, Weiping & Pan, Jianxin, 2010. "Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 181-193.
    6. Weixin Yao & Runze Li, 2013. "New local estimation procedure for a non-parametric regression function for longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 123-138, January.
    7. Fu, Liya & Wang, You-Gan & Zhu, Min, 2015. "A Gaussian pseudolikelihood approach for quantile regression with repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 41-53.
    8. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    9. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    10. Peirong Xu & Lixing Zhu & Yi Li, 2014. "Ultrahigh dimensional time course feature selection," Biometrics, The International Biometric Society, vol. 70(2), pages 356-365, June.
    11. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    12. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    13. Mao, Jie & Zhu, Zhongyi & Fung, Wing K., 2011. "Joint estimation of mean-covariance model for longitudinal data with basis function approximations," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 983-992, February.
    14. Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
    15. Cheng Yong Tang & Chenlei Leng, 2011. "Empirical likelihood and quantile regression in longitudinal data analysis," Biometrika, Biometrika Trust, vol. 98(4), pages 1001-1006.
    16. Weiping Zhang & Chenlei Leng, 2012. "A moving average Cholesky factor model in covariance modelling for longitudinal data," Biometrika, Biometrika Trust, vol. 99(1), pages 141-150.
    17. Lan Wang & Annie Qu, 2009. "Consistent model selection and data‐driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
    2. Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.
    3. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    2. Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.
    3. Jing Lv & Chaohui Guo & Jibo Wu, 2019. "Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 999-1032, September.
    4. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    5. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    6. Xu, Lin & Xiang, Sijia & Yao, Weixin, 2019. "Robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 397-411.
    7. Kangning Wang & Xiaofei Sun, 2020. "Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data," Statistical Papers, Springer, vol. 61(3), pages 967-995, June.
    8. Liu, Shu & You, Jinhong & Lian, Heng, 2017. "Estimation and model identification of longitudinal data time-varying nonparametric models," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 116-136.
    9. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    10. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
    11. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    12. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    14. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    15. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    16. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    17. Lei Wang & Wei Ma, 2021. "Improved empirical likelihood inference and variable selection for generalized linear models with longitudinal nonignorable dropouts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 623-647, June.
    18. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    19. Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    20. Fu, Liya & Wang, You-Gan & Zhu, Min, 2015. "A Gaussian pseudolikelihood approach for quantile regression with repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 41-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:129-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.