IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i9p1239-1245.html
   My bibliography  Save this article

Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics

Author

Listed:
  • Xia, Chengyi
  • Wang, Juan
  • Wang, Li
  • Sun, Shiwen
  • Sun, Junqing
  • Wang, Jinsong

Abstract

In this paper, we investigate the role of update or imitation rules in the spatial snowdrift game on regular lattices. Three different update rules, including unconditional imitation (UI), replicator dynamics (RD) and the Moran process, are utilized to update the strategies of focal players during the game process in the spatial snowdrift on the lattice. We observe that the aggregate cooperation level between players is largely elevated by using the Moran process in the spatial snowdrift game, when compared to the UI or replicator dynamics. Meanwhile, we carefully explore the dynamical evolution of frequency of cooperators and the cluster formation pattern for these three update rules. Moreover, it is also shown that the evolutionary behavior under the Moran update is independent of and insensitive to the randomly initial configurations of cooperators and defectors. The current results clearly indicate that the introduction of moderate randomness in the strategy update will highly promote the maintenance and persistence of cooperation among selfish individuals, which will be greatly instrumental to deeply understand the evolution of cooperation within many natural, biological and social systems.

Suggested Citation

  • Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1239-1245
    DOI: 10.1016/j.chaos.2012.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912001403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianlei & Zhang, Chunyan & Chu, Tianguang, 2011. "The evolution of cooperation in spatial groups," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 131-136.
    2. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    3. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    4. Jin, Qing & Wang, Zhen & Wang, Zhen & Wang, Yi-Ling, 2012. "Strategy changing penalty promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 395-401.
    5. Zhen Wang & Zhen Wang & Yuan-Han Yang & Ming-Xing Yu & Li-Guo Liao, 2012. "Age-Related Preferential Selection Can Promote Cooperation In The Prisoner'S Dilemma Game," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-11.
    6. Du, Wen-Bo & Cao, Xian-Bin & Hu, Mao-Bin & Yang, Han-Xin & Zhou, Hong, 2009. "Effects of expectation and noise on evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2215-2220.
    7. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    8. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    9. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    10. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    11. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    12. Lin, Hai & Yang, Dong-Ping & Shuai, J.W., 2011. "Cooperation among mobile individuals with payoff expectations in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 153-159.
    13. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Yi-ling & Wang, Jin-song & Chen, Zeng-qiang, 2011. "Enhancement of cooperation in prisoner’s dilemma game on weighted lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4602-4609.
    14. A. Szolnoki & M. Perc, 2009. "Promoting cooperation in social dilemmas via simple coevolutionary rules," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 337-344, February.
    15. M. Sysi-Aho & J. Saramäki & J. Kertész & K. Kaski, 2005. "Spatial snowdrift game with myopic agents," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 129-135, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhi-Gang & Wang, Tao & Xiao, De-Gui & Xu, Yin, 2013. "Can remembering history from predecessor promote cooperation in the next generation?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 59-68.
    2. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    3. Keizo Shigaki & Zhen Wang & Jun Tanimoto & Eriko Fukuda, 2013. "Effect of Initial Fraction of Cooperators on Cooperative Behavior in Evolutionary Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-7, November.
    4. Deng, Zhenghong & Wang, Shengnan & Gu, Zhiyang & Xu, Juwei & Song, Qun, 2017. "Heterogeneous preference selection promotes cooperation in spatial prisoners’ dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 20-23.
    5. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    6. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    8. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    9. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    10. Kohei Miyaji & Jun Tanimoto & Zhen Wang & Aya Hagishima & Naoki Ikegaya, 2013. "Direct Reciprocity in Spatial Populations Enhances R-Reciprocity As Well As ST-Reciprocity," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    11. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    12. Wang, Xu-Wen & Wang, Zhen & Nie, Sen & Jiang, Luo-Luo & Wang, Bing-Hong, 2015. "Impact of keeping silence on spatial reciprocity in spatial games," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 848-853.
    13. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    14. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    16. Tao, Xiangyu & Zhu, Linhe, 2021. "Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    18. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    19. Zhang, Gui-Qing & Hu, Tao-Ping & Yu, Zi, 2016. "An improved fitness evaluation mechanism with noise in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 31-36.
    20. Alatas, Husin & Nurhimawan, Salamet & Asmat, Fikri & Hardhienata, Hendradi, 2017. "Dynamics of an agent-based opinion model with complete social connectivity network," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 24-32.
    21. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    2. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    3. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    4. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    5. Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
    6. Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
    7. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    8. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    9. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    11. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    12. Sun, Jiaqin & Fan, Ruguo & Luo, Ming & Zhang, Yingqing & Dong, Lili, 2018. "The evolution of cooperation in spatial prisoner’s dilemma game with dynamic relationship-based preferential learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 598-611.
    13. Ding, Chenxi & Wang, Juan & Zhang, Ying, 2016. "Impact of self interaction on the evolution of cooperation in social spatial dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 393-399.
    14. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    15. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    16. Kohei Miyaji & Jun Tanimoto & Zhen Wang & Aya Hagishima & Naoki Ikegaya, 2013. "Direct Reciprocity in Spatial Populations Enhances R-Reciprocity As Well As ST-Reciprocity," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    17. Li, Hong-yang & Xiao, Jian & Li, Yu-meng & Wang, Zhen, 2013. "Effects of neighborhood type and size in spatial public goods game on diluted lattice," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 145-153.
    18. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    19. Ding, Shuai & Wang, Juan & Ruan, Sumei & Xia, Chengyi, 2015. "Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 91-99.
    20. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1239-1245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.