IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i2p892-899.html
   My bibliography  Save this article

The orthogonal interpolating balanced multiwavelet with rational coefficients

Author

Listed:
  • Li, Rui
  • Wu, Guochang

Abstract

In this paper, we construct the orthogonal interpolating multiwavelet of multiplicity r=4 with the balancing property of order 1 and with rational coefficients. At first, we introduce the notations of multiwavelet, interpolating and balancing. Secondly, for an orthogonal multiwavelet of multiplicity r=4 having totally interpolating property, we deduce that the corresponding filter of the orthogonal multiscaling function with totally interpolating property has the parametric expression. Then, similarly to r=2, we prove that there no exists any interpolating orthogonal multiwavelet with the symmetry. At last, we construct some examples of the orthogonal multiwavelets of multiplicity r=4 with totally interpolating property and the balancing property of order 1 by the parametric way.

Suggested Citation

  • Li, Rui & Wu, Guochang, 2009. "The orthogonal interpolating balanced multiwavelet with rational coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 892-899.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:2:p:892-899
    DOI: 10.1016/j.chaos.2008.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908001914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    2. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    3. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    2. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    3. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    4. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    5. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    6. Sun, Lei & Li, Gang, 2009. "Generalized orthogonal multiwavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2420-2424.
    7. Liu, Zhanwei & Hu, Guoen & Wu, Guochang, 2009. "Frame scaling function sets and frame wavelet sets in Rd," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2483-2490.
    8. Han, Jincang & Cheng, Zhengxing, 2009. "On the splitting trick and wavelets packets with arbitrary dilation matrix of L2(Rs)," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 130-137.
    9. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    10. Iovane, G., 2006. "Cantorian spacetime and Hilbert space: Part I—Foundations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 857-878.
    11. Wu, Guochang & Li, Zhiqiang & Cheng, Zhengxing, 2009. "Construction of wavelets with composite dilations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2447-2456.
    12. El-Nabulsi, Rami Ahmad, 2009. "Fractional Dirac operators and deformed field theory on Clifford algebra," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2614-2622.
    13. Wu, Guochang & Cheng, Zhengxing & Li, Dengfeng & Zhang, Fangjuan, 2008. "Parseval frame wavelets associated with A-FMRA," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1233-1243.
    14. Iovane, Gerardo, 2008. "The distribution of prime numbers: The solution comes from dynamical processes and genetic algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 23-42.
    15. Sun, Lei & Cheng, Zhengxing, 2007. "Construction of a class of compactly supported orthogonal vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 253-261.
    16. Rami, El-Nabulsi Ahmad, 2009. "Fractional illusion theory of space: Fractional gravitational field with fractional extra-dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 377-384.
    17. Rami, El-Nabulsi Ahmad, 2009. "On the fractional minimal length Heisenberg–Weyl uncertainty relation from fractional Riccati generalized momentum operator," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 84-88.
    18. El-Nabulsi, Ahmad Rami, 2009. "Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2384-2398.
    19. Iovane, Gerardo, 2008. "The set of prime numbers: Symmetries and supersymmetries of selection rules and asymptotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 950-961.
    20. Iovane, G., 2006. "Cantorian space–time and Hilbert space: Part II—Relevant consequences," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 1-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:2:p:892-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.