IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i3p631-640.html
   My bibliography  Save this article

A novel image encryption scheme based on spatial chaos map

Author

Listed:
  • Sun, Fuyan
  • Liu, Shutang
  • Li, Zhongqin
  • Lü, Zongwang

Abstract

In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.

Suggested Citation

  • Sun, Fuyan & Liu, Shutang & Li, Zhongqin & Lü, Zongwang, 2008. "A novel image encryption scheme based on spatial chaos map," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 631-640.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:631-640
    DOI: 10.1016/j.chaos.2008.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908000477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Linhua & Liao, Xiaofeng & Wang, Xuebing, 2005. "An image encryption approach based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 759-765.
    2. Li, Ping & Li, Zhong & Halang, Wolfgang A. & Chen, Guanrong, 2007. "A stream cipher based on a spatiotemporal chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1867-1876.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    2. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    2. Enas Ali Jameel, 2022. "Digital Image Encryption Techniques: Article Review," Technium, Technium Science, vol. 4(1), pages 24-35.
    3. Kanso, Ali & Smaoui, Nejib, 2009. "Logistic chaotic maps for binary numbers generations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2557-2568.
    4. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    5. Yang, Jiyun & Liao, Xiaofeng & Yu, Wenwu & Wong, Kwok-wo & Wei, Jun, 2009. "Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 821-825.
    6. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    7. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    8. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Gao, Haojiang & Zhang, Yisheng & Liang, Shuyun & Li, Dequn, 2006. "A new chaotic algorithm for image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 393-399.
    10. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    11. Wong, Kwok-Wo & Kwok, Bernie Sin-Hung & Yuen, Ching-Hung, 2009. "An efficient diffusion approach for chaos-based image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2652-2663.
    12. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.
    13. Rhouma, Rhouma & Belghith, Safya, 2009. "Cryptanalysis of a spatiotemporal chaotic cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1718-1722.
    14. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    15. Arshad, Usman & Khan, Majid & Shaukat, Sajjad & Amin, Muhammad & Shah, Tariq, 2020. "An efficient image privacy scheme based on nonlinear chaotic system and linear canonical transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:631-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.