IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i2p513-522.html
   My bibliography  Save this article

New applications of Adomian decomposition method

Author

Listed:
  • El-Wakil, S.A.
  • Abdou, M.A.

Abstract

In this article, we have discussed a new application of Adomian decomposition method on nonlinear physical equations. The models of interest in physics are considered and solved by means of Adomian decomposition method. The behaviour of Adomian solutions and the effects of different values of t are investigated. Numerical illustrations that include nonlinear physical models are investigated to show the pertinent features of the technique.

Suggested Citation

  • El-Wakil, S.A. & Abdou, M.A., 2007. "New applications of Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 513-522.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:513-522
    DOI: 10.1016/j.chaos.2005.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.12.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odibat, Zaid, 2020. "An optimized decomposition method for nonlinear ordinary and partial differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. El-Wakil, S.A. & Abulwafa, Essam M. & Abdou, M.A., 2009. "An improved variational iteration method for solving coupled KdV and Boussinesq-like B(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1324-1334.
    3. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    4. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    5. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:2:p:513-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.