IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i4p1108-1114.html
   My bibliography  Save this article

A novel model for allometric scaling laws for different organs

Author

Listed:
  • He, Ji-Huan
  • Huang, Zhende

Abstract

The power function of metabolic rate scaling for an organ is established as Borgan∼Torgan(D+N/6)/(D+1), where Borgan is the metabolic rate of the organ, Torgan is its mass, D is its fractal dimension of the total cell boundary, and N is its cell’s degree of freedom of motion. This prediction agrees quite well with the experimental data for the brain, liver, heart, and kidneys, and it explains very well the reason why the maximal metabolic rate induced by exercise scales with M0.86 rather then M0.75.

Suggested Citation

  • He, Ji-Huan & Huang, Zhende, 2006. "A novel model for allometric scaling laws for different organs," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1108-1114.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:1108-1114
    DOI: 10.1016/j.chaos.2005.04.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905004285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    2. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    3. Chen, Yanguang & Jiang, Shiguo, 2009. "An analytical process of the spatio-temporal evolution of urban systems based on allometric and fractal ideas," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 49-64.
    4. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    5. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    6. He, Ji-Huan, 2006. "Cell size and cell number as links between noncoding DNA and metabolic rate scaling," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1026-1028.
    7. He, Ji-Huan, 2008. "Fatalness of virus depends upon its cell fractal geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1390-1393.
    8. Tjeerd V olde Scheper, 2022. "Controlled bio-inspired self-organised criticality," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
    9. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    10. He, Ji-Huan, 2007. "Shrinkage of body size of small insects: A possible link to global warming?," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 727-729.
    11. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:4:p:1108-1114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.