IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924002522.html
   My bibliography  Save this article

Detection of epileptic seizure using EEG signals analysis based on deep learning techniques

Author

Listed:
  • Abdulwahhab, Ali H.
  • Abdulaal, Alaa Hussein
  • Thary Al-Ghrairi, Assad H.
  • Mohammed, Ali Abdulwahhab
  • Valizadeh, Morteza

Abstract

The brain neurons' electrical activities represented by Electroencephalogram (EEG) signals are the most common data for diagnosing Epilepsy seizure, which is considered a chronic nervous disorder that cannot be controlled medically using surgical operation or medications with more than 40 % of Epilepsy seizure case. With the progress and development of artificial intelligence and deep learning techniques, it becomes possible to detect these seizures over the observation of the non-stationary-dynamic EEG signals, which contain important information about the mental state of patients. This paper provides a concerted deep machine learning model consisting of two simultaneous techniques detecting the activity of epileptic seizures using EEG signals. The time-frequency image of EEG waves and EEG raw waves are used as input components for the convolution neural network (CNN) and recurrent neural network (RNN) with long- and short-term memory (LSTM). Two processing signal methods have been used, Short-Time Fourier Transform (STFT) and Continuous Wavelet Transformation (CWT), have been used for generating spectrogram and scalogram images with sizes of 77 × 75 and 32 × 32, respectively. The experimental results showed a detection accuracy of 99.57 %, 99.57 % using CWT Scalograms, and 99.26 %, 97.12 % using STFT spectrograms as CNN input for the Bonn University dataset and the CHB-MIT dataset, respectively. Thus, the proposed models provide the ability to detect epileptic seizures with high success compared to previous studies.

Suggested Citation

  • Abdulwahhab, Ali H. & Abdulaal, Alaa Hussein & Thary Al-Ghrairi, Assad H. & Mohammed, Ali Abdulwahhab & Valizadeh, Morteza, 2024. "Detection of epileptic seizure using EEG signals analysis based on deep learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002522
    DOI: 10.1016/j.chaos.2024.114700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.