IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001462.html
   My bibliography  Save this article

Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients

Author

Listed:
  • Yin, Yu-Hang
  • Lü, Xing

Abstract

In this paper, we focus on the inverse problem study of nonlinear Schrödinger (NLS) typed equations in optical fiber communicaitons. As an extension of the physics-informed neural network (PINN), multi-parallelized PINNs are constructed and trained for the discovery of diverse high-order terms and variable coefficients. We firstly study various constant-coefficient combinations of a generalized high-order NLS typed equation, where the Chen-Lee-Liu equation, the Gerdjikov-Ivanov equation and the Kundu-Eckhaus equation are included. With small amount of exact solutions available to us, we predict the value of multiple coefficients under different cases to deduce the undetermined terms of the generalized equation based on the multi-parallelized PINN. Different categories of NLS typed equations are then inferred. In the meantime, high accuracy numerical solutions on localized regions can be accordingly obtained.

Suggested Citation

  • Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001462
    DOI: 10.1016/j.chaos.2024.114595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.