IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001000.html
   My bibliography  Save this article

Chimera-like state in the bistable excitatory-inhibitory cortical neuronal network

Author

Listed:
  • Li, Xuening
  • Xie, Ying
  • Ye, Zhiqiu
  • Huang, Weifang
  • Yang, Lijian
  • Zhan, Xuan
  • Jia, Ya

Abstract

In recent years, the coexistence of different states in the neural system has attracted widespread interest. Researchers have found a coexisting state of spiking and resting in homogeneous networks, which is known as the chimera-like state. The real cortical network is a much more complex and heterogeneous network. Therefore, the excitatory-inhibitory cortical neuronal network is constructed based on Hodgkin-Huxley neuronal model in this paper, and the chimera-like state is further investigated in the heterogeneous network. It is found that the chimera-like state is related to the balance between excitatory and inhibitory synaptic currents. The excitatory coupling current can counteract the initial condition effect and promote synchronized firing of neurons in the network. The inhibitory coupling current desynchronizes the network and thus induces synaptic noise, resulting in an inverse bell-shaped dependence of the change in the number of spiking neurons. We analyzed the underlying mechanisms of synaptic noise in the phase plane diagram and found it has asymmetry for the neuronal state transition. In addition, neurons with low degrees have a higher probability of undergoing state transitions. Finally, we verified that the chimera-like state is robust to network topology and initial conditions. The results provide a new insight into neuronal interactions in heterogeneous networks and might help to reveal the mechanisms of coexistence of different states in the cortical network.

Suggested Citation

  • Li, Xuening & Xie, Ying & Ye, Zhiqiu & Huang, Weifang & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2024. "Chimera-like state in the bistable excitatory-inhibitory cortical neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001000
    DOI: 10.1016/j.chaos.2024.114549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.