IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000389.html
   My bibliography  Save this article

Identifying critical nodes in complex networks based on distance Laplacian energy

Author

Listed:
  • Yin, Rongrong
  • Li, Linhui
  • Wang, Yumeng
  • Lang, Chun
  • Hao, Zhenyang
  • Zhang, Le

Abstract

Identifying critical nodes in complex networks is a fundamental problem, it plays a crucial role in stabilizing the performance of the network structure and propagating information. Majority of the existing studies are built by directly considering the topology of the network. In this paper, a new vertex centrality called distance Laplacian centrality (DLC) is proposed for critical nodes identification from the perspective of graph energy. This method incorporates the vertex’s transfer degree, considers the position of nodes in the network from a global perspective, and measures the importance of a node using the relative variation of the distance Laplacian energy responding to the deletion of the node from the network. To validate the performance and applicability of the proposed method, this paper compares DLC with other methods through susceptible-infected-recovered (SIR) model on different real networks. The experimental results demonstrate that DLC has better performance in terms of influence, distinguishing ability relevance and ranking accuracy, and can effectively recognize critical nodes in complex networks.

Suggested Citation

  • Yin, Rongrong & Li, Linhui & Wang, Yumeng & Lang, Chun & Hao, Zhenyang & Zhang, Le, 2024. "Identifying critical nodes in complex networks based on distance Laplacian energy," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000389
    DOI: 10.1016/j.chaos.2024.114487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.