IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v179y2024ics0960077923012985.html
   My bibliography  Save this article

Image encryption algorithm based on a new 3D chaotic system using cellular automata

Author

Listed:
  • Darani, A. Yousefian
  • Yengejeh, Y. Khedmati
  • Pakmanesh, H.
  • Navarro, G.

Abstract

Cryptography and steganography are usual methods for safe transfer of information, which encryption algorithms turn original images into unreadable noise-like images. This paper presents a novel symmetric cryptosystem designed for the transmission of RGB color images through open channels and our goal is to provide a secure cryptography algorithm against cropping and noise attacks. The encryption algorithm is based on a suitable 3D hybrid chaotic system, with high Lyapunov exponent value, leveraging the advantages of common chaos maps while addressing their inherent limitations. To further enhance security, a novel pixel shuffle operator is employed to eliminate any potential neighborhood relations between image pixels. The encryption process incorporates reversible second-order cellular automata, which are applied to the outputs of the chaotic system. Key generation is achieved through the utilization of irreversible cellular automata. The resulting key space is large enough to resist brute-force attacks and performs a high level of sensitivity. Experimental results, including analysis of histograms, entropies, and pixel correlations, confirm the effectiveness of the proposed image encryption scheme, and prove its resilient against statistical attacks and a remarkable resistance against data loss attacks.

Suggested Citation

  • Darani, A. Yousefian & Yengejeh, Y. Khedmati & Pakmanesh, H. & Navarro, G., 2024. "Image encryption algorithm based on a new 3D chaotic system using cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923012985
    DOI: 10.1016/j.chaos.2023.114396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923012985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.