IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012602.html
   My bibliography  Save this article

Exploring cooperative evolution with tunable payoff’s loners using reinforcement learning

Author

Listed:
  • Zhang, Huizhen
  • An, Tianbo
  • Yan, Pingping
  • Hu, Kaipeng
  • An, Jinjin
  • Shi, Lijuan
  • Zhao, Jian
  • Wang, Jingrui

Abstract

Imitation and replication have emerged as a paradigm in numerous studies that explore the evolution of cooperative behavior. Since they embrace the essence of natural selection, it is widely recognized in exploring the evolution of biological behaviors. However, it is not easy to express the way individuals select and optimize in these simple and elegant ways in the complex and variable interactive environments. Currently, reinforcement learning is widely used in the study of strategy updating dynamics and agent learning processes in game theory. Therefore, we introduce the Q-learning algorithms into the voluntary public goods game to explore the impact of cooperative evolution. Simulation results demonstrate that when the synergy factor is large and the adjust loner payoff’s multiply factor is smaller, the number of cooperators becomes gradually consistent. As the synergy factor increases, the evolution of the proportion of defectors become nonlinear. Furthermore, we further explore the Q-table and strategy updating processes of agents in the steady state under a smaller multiply factor that adjusts the loner’s payoff. The results find inconsistency between the average Q-values and the steady state population strategy distribution. Subsequently, we explain the reason for the inconsistency by analyzing strategy sequence, namely that there are a number of agents who constantly change strategies in the population, and the Q-values of these agents have an impact on the overall Q-values. In addition, evolutionary snapshots of agent strategy sequences are observed. The results find that the agent’s strategic selection shows greater instability when the proportions of cooperators, defectors, and loners in the population are relatively balanced. Finally, the effect of parameters in the Q-learning algorithm on cooperative behavior is analyzed. This study hopes to provide valuable insights into understanding the dynamics of cooperation in complex social interactions.

Suggested Citation

  • Zhang, Huizhen & An, Tianbo & Yan, Pingping & Hu, Kaipeng & An, Jinjin & Shi, Lijuan & Zhao, Jian & Wang, Jingrui, 2024. "Exploring cooperative evolution with tunable payoff’s loners using reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012602
    DOI: 10.1016/j.chaos.2023.114358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.