IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007701.html
   My bibliography  Save this article

Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices

Author

Listed:
  • Liu, Xiuye
  • Zeng, Jianhua

Abstract

Optical lattices provide a key enabling and controllable platform for exploring new physical phenomena and implications of degenerate quantum gases both in the quantum and nonlinear regimes. Based on the Gross–Pitaevskii/nonlinear Schrödinger equation with competing cubic–quintic nonlinearity, we show, numerically and theoretically, the nonlinear localization of dense Bose–Einstein condensates (BECs) in a novel two-dimensional twisted periodic potential called Moiré optical lattices which, in essence, build a bridge between the perfect optical lattices and aperiodic ones. Our theory reveals that the Moiré optical lattices display a wider second gap and flat-band feature, and support two kinds of localized matter-wave structures like gap solitons and topological states (gap vortices) with vortex charge s=1, all populated inside the finite gaps of the linear Bloch-wave spectrum. We demonstrate, by means of linear-stability analysis and direct perturbed evolutions, that these localized structures have wide stability regions, paving the way for studying flat-band and Moiré physics in shallow optical lattices and for finding robust coherent matter waves therein. The twisted periodic structures can be readily implemented with currently available optical-lattice technique in BECs and nonlinear optics experiments where the results predicted here are observable.

Suggested Citation

  • Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007701
    DOI: 10.1016/j.chaos.2023.113869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Ahmet Demir & Shiang Fang & Spencer L. Tomarken & Jason Y. Luo & Javier D. Sanchez-Yamagishi & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Ray C. Ashoori & Pablo, 2018. "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 80-84, April.
    2. Guangwei Hu & Qingdong Ou & Guangyuan Si & Yingjie Wu & Jing Wu & Zhigao Dai & Alex Krasnok & Yarden Mazor & Qing Zhang & Qiaoliang Bao & Cheng-Wei Qiu & Andrea Alù, 2020. "Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers," Nature, Nature, vol. 582(7811), pages 209-213, June.
    3. Juliette Billy & Vincent Josse & Zhanchun Zuo & Alain Bernard & Ben Hambrecht & Pierre Lugan & David Clément & Laurent Sanchez-Palencia & Philippe Bouyer & Alain Aspect, 2008. "Direct observation of Anderson localization of matter waves in a controlled disorder," Nature, Nature, vol. 453(7197), pages 891-894, June.
    4. Zhaoyang Zhang & Rong Wang & Yiqi Zhang & Yaroslav V. Kartashov & Feng Li & Hua Zhong & Hua Guan & Kelin Gao & Fuli Li & Yanpeng Zhang & Min Xiao, 2020. "Observation of edge solitons in photonic graphene," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    5. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Tal Schwartz & Guy Bartal & Shmuel Fishman & Mordechai Segev, 2007. "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature, Nature, vol. 446(7131), pages 52-55, March.
    7. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    8. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    9. Markus Greiner & Olaf Mandel & Tilman Esslinger & Theodor W. Hänsch & Immanuel Bloch, 2002. "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature, Nature, vol. 415(6867), pages 39-44, January.
    10. Barak Freedman & Guy Bartal & Mordechai Segev & Ron Lifshitz & Demetrios N. Christodoulides & Jason W. Fleischer, 2006. "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature, Nature, vol. 440(7088), pages 1166-1169, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Liangwei & Du, Zhijing & Ren, Zhijun, 2023. "Fractional angular momentum borne on rotating vortex solitons," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Transformation of rotating dipole and vortex solitons in an anharmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Huagen Li & Dong Wang & Guoqiang Xu & Kaipeng Liu & Tan Zhang & Jiaxin Li & Guangming Tao & Shuihua Yang & Yanghua Lu & Run Hu & Shisheng Lin & Ying Li & Cheng-Wei Qiu, 2024. "Twisted moiré conductive thermal metasurface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. C. D. Dashwood & A. H. Walker & M. P. Kwasigroch & L. S. I. Veiga & Q. Faure & J. G. Vale & D. G. Porter & P. Manuel & D. D. Khalyavin & F. Orlandi & C. V. Colin & O. Fabelo & F. Krüger & R. S. Perry , 2023. "Strain control of a bandwidth-driven spin reorientation in Ca3Ru2O7," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Dongxue Chen & Zhen Lian & Xiong Huang & Ying Su & Mina Rashetnia & Li Yan & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Zenghui Wang & Chuanwei Zhang & Yong-Tao Cui & Su-Fei S, 2022. "Tuning moiré excitons and correlated electronic states through layer degree of freedom," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Manabendra Kuiri & Christopher Coleman & Zhenxiang Gao & Aswin Vishnuradhan & Kenji Watanabe & Takashi Taniguchi & Jihang Zhu & Allan H. MacDonald & Joshua Folk, 2022. "Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Yuting Tan & Pak Ki Henry Tsang & Vladimir Dobrosavljević, 2022. "Disorder-dominated quantum criticality in moiré bilayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    20. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.