IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v171y2023ics0960077923004071.html
   My bibliography  Save this article

Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity

Author

Listed:
  • Ladeynov, D.A.
  • Egorov, D.G.
  • Pankratov, A.L.

Abstract

The Josephson junction, as a threshold detector, is studied in the presence of noise and a weak external signal in the framework of the pendulum model. A range of parameters, efficient for weak signal detection has been found. While in the low noise limit the signal can be enhanced via dynamic resonant activation mechanism, even weaker signals can be efficiently detected with the help of noise via stochastic resonant activation mechanism. The parameter optimizations of a microwave single photon counter prototype based on aluminum Josephson junction are discussed.

Suggested Citation

  • Ladeynov, D.A. & Egorov, D.G. & Pankratov, A.L., 2023. "Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923004071
    DOI: 10.1016/j.chaos.2023.113506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gil-Ho Lee & Dmitri K. Efetov & Woochan Jung & Leonardo Ranzani & Evan D. Walsh & Thomas A. Ohki & Takashi Taniguchi & Kenji Watanabe & Philip Kim & Dirk Englund & Kin Chung Fong, 2020. "Graphene-based Josephson junction microwave bolometer," Nature, Nature, vol. 586(7827), pages 42-46, October.
    2. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    3. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Doering, Charles R., 1998. "Stochastic ratchets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 254(1), pages 1-6.
    5. Yablokov, A.A. & Mylnikov, V.M. & Pankratov, A.L. & Pankratova, E.V. & Gordeeva, A.V., 2020. "Suppression of switching errors in weakly damped Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Guarcello, C. & Bergeret, F.S., 2021. "Thermal noise effects on the magnetization switching of a ferromagnetic anomalous Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Kunihiro Inomata & Zhirong Lin & Kazuki Koshino & William D. Oliver & Jaw-Shen Tsai & Tsuyoshi Yamamoto & Yasunobu Nakamura, 2016. "Single microwave-photon detector using an artificial Λ-type three-level system," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    8. E. V. Pankratova & V. N. Belykh & E. Mosekilde, 2006. "Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with suprathreshold forcing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(4), pages 529-536, October.
    9. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. R. Kokkoniemi & J.-P. Girard & D. Hazra & A. Laitinen & J. Govenius & R. E. Lake & I. Sallinen & V. Vesterinen & M. Partanen & J. Y. Tan & K. W. Chan & K. Y. Tan & P. Hakonen & M. Möttönen, 2020. "Bolometer operating at the threshold for circuit quantum electrodynamics," Nature, Nature, vol. 586(7827), pages 47-51, October.
    11. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Yablokov, A.A. & Mylnikov, V.M. & Pankratov, A.L. & Pankratova, E.V. & Gordeeva, A.V., 2020. "Suppression of switching errors in weakly damped Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Cherebilo, Elena, 2022. "Tuning the resistive switching in tantalum oxide-based memristors by oxygen pressure during low temperature laser synthesis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    10. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    14. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Cui, Kaiyan & Song, Zhanjie & Zhang, Shuo, 2022. "Stability of neutral-type neural network with Lévy noise and mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    19. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    20. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923004071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.