IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923001212.html
   My bibliography  Save this article

Dynamics and control of spiral waves under feedback derived from a moving measuring point

Author

Listed:
  • Yuan, Guoyong
  • Liu, Pengwei
  • Shi, Jifang
  • Wang, Guangrui

Abstract

Feedback control of spiral waves by the signal derived from a moving measuring point is investigated in the two-dimensional FitzHugh–Nagumo model, where the measuring location is changed with the motion of the spiral tip according to two schemes. In the first scheme, the direction of the line joining the spiral tip and the moving measuring point at the same time remains unchanged during the feedback control, and the application of the feedback signal can make the spiral tip gradually drift to the non-flux boundary of the system, which eventually causes the disappearance of the whole spiral pattern. It is interesting that the drift unit can always travel in a straight line after a period of time, which is more effective for eliminating spiral waves. The direction angles of the straight drift and the initial drift depend on the parameters for determining the measuring location. The second scheme is designed to has a fixed included angle between the joining line and the tangent line of the tip path at the instantaneous tip position during the control. In response to the feedback control, the system can show a few types of dynamical behaviors, including the transition from the inward-petal to outward-petal tip paths, the shrinkage of the attractor region for outward-petal tip paths with a larger unexcited core, and the transition from meandering to rigidly rotating spirals.

Suggested Citation

  • Yuan, Guoyong & Liu, Pengwei & Shi, Jifang & Wang, Guangrui, 2023. "Dynamics and control of spiral waves under feedback derived from a moving measuring point," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001212
    DOI: 10.1016/j.chaos.2023.113220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivan Voitov & Thomas D. Mrsic-Flogel, 2022. "Cortical feedback loops bind distributed representations of working memory," Nature, Nature, vol. 608(7922), pages 381-389, August.
    2. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Tang, Jun & Luo, Jin-Ming & Ma, Jun & Yi, Ming & Yang, Xian-Qing, 2013. "Spiral waves in systems with fractal heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5764-5771.
    4. Ma, Jun & Gao, Ji-Hua & Wang, Chun-Ni & Su, Jun-Yan, 2008. "Control spiral and multi-spiral wave in the complex Ginzburg–Landau equation," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 521-530.
    5. Wang, Zhen & Rostami, Zahra & Jafari, Sajad & Alsaadi, Fawaz E. & Slavinec, Mitja & Perc, Matjaž, 2019. "Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 229-233.
    6. Guo, Shuangjian & Dai, Qionglin & Cheng, Hongyan & Li, Haihong & Xie, Fagen & Yang, Junzhong, 2018. "Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 394-399.
    7. Hui Xiao & Eve McDonald-Madden & Régis Sabbadin & Nathalie Peyrard & Laura E. Dee & Iadine Chadès, 2019. "The value of understanding feedbacks from ecosystem functions to species for managing ecosystems," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    8. Pravdin, Sergei F. & Panfilov, Alexander V., 2022. "Doppler shift during overdrive pacing of spiral waves. Prediction of the annihilation site," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yiling & Yuan, Guoyong & Liu, Jun & Shi, Jifang & Wang, Guangrui & Chen, Shaoying, 2023. "Spiral dynamics in oscillatory bilayer systems with an inhomogeneous inter-layer coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yuan, Guoyong & Xu, Lin & Xu, Aiguo & Wang, Guangrui & Yang, Shiping, 2011. "Spiral waves in excitable media due to noise and periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 728-738.
    4. Xiao, Hui & Chadès, Iadine & Hill, Narelle & Murray, Nicholas & Fuller, Richard A. & McDonald-Madden, Eve, 2021. "Conserving migratory species while safeguarding ecosystem services," Ecological Modelling, Elsevier, vol. 442(C).
    5. Rajagopal, Karthikeyan & Karthikeyan, Anitha, 2022. "Spiral waves and their characterization through spatioperiod and spatioenergy under distinct excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Lazarides, N. & Hizanidis, J. & Tsironis, G.P., 2020. "Controlled generation of chimera states in SQUID metasurfaces using DC flux gradients," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Hu, Yipeng & Ding, Qianming & Wu, Yong & Jia, Ya, 2023. "Polarized electric field-induced drift of spiral waves in discontinuous cardiac media," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Zhou, Ping & Ma, Jun & Xu, Ying, 2023. "Phase synchronization between neurons under nonlinear coupling via hybrid synapse," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Yu, Yang F. & Fuller, Chase A. & McGuire, Margaret K. & Glaser, Rebecca & Smith, Nathaniel J. & Manz, Niklas & Lindner, John F., 2021. "Disruption and recovery of reaction–diffusion wavefronts interacting with concave, fractal, and soft obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Nazimuddin, A.K.M. & Kabir, M. Humayun & Gani, M. Osman, 2023. "Spiral patterns and numerical bifurcation analysis in a three-component Brusselator model for chemical reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 577-591.
    12. René Eschen & Purity Rima Mbaabu & Bruno Salomon Ramamonjisoa & Carmenza Robledo-Abad, 2021. "Factors enhancing the level of utilisation of research knowledge on ecosystems," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-16, July.
    13. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. A.V., Bukh & V.S., Anishchenko, 2020. "Spiral and target wave chimeras in a 2D network of nonlocally coupled van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Cabanas, A.M. & Vélez, J.A. & Pérez, L.M. & Díaz, P. & Clerc, M.G. & Laroze, D. & Malomed, B.A., 2021. "Dissipative structures in a parametrically driven dissipative lattice: Chimera, localized disorder, continuous-wave, and staggered states," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Mao, Zhun & Centanni, Julia & Pommereau, Franck & Stokes, Alexia & Gaucherel, Cédric, 2021. "Maintaining biodiversity promotes the multifunctionality of social-ecological systems: holistic modelling of a mountain system," Ecosystem Services, Elsevier, vol. 47(C).
    17. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Wang, Xueli & Yuan, Guoyong & Liu, Jun & Wang, Guangrui, 2020. "Control of spiral drift by using feedback signals from a circular measuring domain in oscillatory media," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    20. Ma, Jun & Jia, Ya & Yi, Ming & Tang, Jun & Xia, Ya-Feng, 2009. "Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1331-1339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.