IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008171.html
   My bibliography  Save this article

Cattaneo–Friedrich and Crank–Nicolson analysis of upper-convected Maxwell fluid along a vertical plate

Author

Listed:
  • Hanif, Hanifa

Abstract

The concept of fractional derivative is used to solve a variety of viscoelastic fluid problems. However, researchers mostly overlooked the consequences of nonlinear convection in the fractional viscoelastic fluid models and were concerned only with situations where the governing equations are linear. Most importantly, the nonlinear fluid models, whether classical or fractional, are solved for steady-state conditions. To overcome these limitations, this research presents unsteady flow and heat transfer of nonlinear fractional upper-convected Maxwell (UCM) viscoelastic fluid along a vertical plate. The governing equations of the fractional Maxwell fluid are developed by introducing Friedrich shear stress and Cattaneo heat flux models to the classical UCM fluid model. An additional feature to the invention of the constructed fractional model is the consequence of an external magnetic field. Moreover, the considered model comprises nonlinear, coupled, fractional partial differential equations. Therefore, a numerical scheme is developed with the aid of the L1-approximation of Caputo derivative and the Crank–Nicolson method. The effects of different regulating parameters on fluid features have been thoroughly investigated. The obtained results are exhibited graphically and discussed in detail. It is observed that the skin friction increases for the velocity relaxation time parameter, but an opposite behavior is observed against the velocity fractional derivative parameter. Moreover, a significant enhancement is noticed in the Nusselt number for increasing estimates of the Prandtl number.

Suggested Citation

  • Hanif, Hanifa, 2021. "Cattaneo–Friedrich and Crank–Nicolson analysis of upper-convected Maxwell fluid along a vertical plate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008171
    DOI: 10.1016/j.chaos.2021.111463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owolabi, Kolade M., 2017. "Mathematical modelling and analysis of two-component system with Caputo fractional derivative order," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 544-554.
    2. Ahmed A. Afify & Nasser S. Elgazery, 2020. "Impacts of Newtonian heating, variable fluid properties and Cattaneo–Christov model on MHD stagnation point flow of Walters’ B fluid induced by stretching surface," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(09), pages 1-17, September.
    3. Hanif, Hanifa, 2022. "A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    2. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    3. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    4. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    5. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    7. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Owolabi, Kolade M., 2019. "Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 89-101.
    10. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 119-127.
    13. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    15. ZOUARI, Farouk & IBEAS, Asier & BOULKROUNE, Abdesselem & CAO, Jinde & AREFI, Mohammad Mehdi, 2021. "Neural network controller design for fractional-order systems with input nonlinearities and asymmetric time-varying Pseudo-state constraints," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Du, Wentong & Xiao, Min & Ding, Jie & Yao, Yi & Wang, Zhengxin & Yang, Xinsong, 2023. "Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 414-438.
    17. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    18. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.