IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007529.html
   My bibliography  Save this article

A fractional calculus model for HIV dynamics: real data, parameter estimation and computational strategies

Author

Listed:
  • Martinez, V.M.
  • Barbosa, A.N.
  • Mancera, P.F.A.
  • Rodrigues, D.S.
  • Camargo, R.F.

Abstract

This work deals with mathematical modeling applied to the Human Immunodeficiency Virus. Mathematical aspects analysis is presented, discussed and reviewed. A new model based on the Fractional Calculus theory is proposed. Parameter estimations are made via two computational strategies to both classical and fractional models aiming to investigate the effects of Caputo fractional derivative. The real data are from HIV patients undergoing antiretroviral therapy in different immune responses. From a quality analysis proposal based on the intraclass correlation coefficient and mean absolute percentage error, combined with the numerical simulations, it was shown that the adopted methodology is a promising tool in the understanding of the HIV/T-CD4+ interaction.

Suggested Citation

  • Martinez, V.M. & Barbosa, A.N. & Mancera, P.F.A. & Rodrigues, D.S. & Camargo, R.F., 2021. "A fractional calculus model for HIV dynamics: real data, parameter estimation and computational strategies," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007529
    DOI: 10.1016/j.chaos.2021.111398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    2. S. A. M. Yatim & Z. B. Ibrahim & K. I. Othman & M. B. Suleiman, 2013. "A Numerical Algorithm for Solving Stiff Ordinary Differential Equations," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, February.
    3. Abdel-Aty, Abdel-Haleem & Khater, Mostafa M.A. & Dutta, Hemen & Bouslimi, Jamel & Omri, M., 2020. "Computational solutions of the HIV-1 infection of CD4+T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attaullah, & Jan, Rashid & Yüzbaşı, Şuayip, 2021. "Dynamical behaviour of HIV Infection with the influence of variable source term through Galerkin method," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Yüzbaşı, Şuayip & Izadi, Mohammad, 2022. "Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    3. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    5. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.
    6. Nicola Bellomo & Richard Bingham & Mark A.J. Chaplain & Giovanni Dosi & Guido Forni & Damian A. Knopoff & John Lowengrub & Reidun Twarock & Maria Enrica Virgillito, 2020. "A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world," LEM Papers Series 2020/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Nabi, Khondoker Nazmoon & Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Projections and fractional dynamics of COVID-19 with optimal control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Sun, Hongquan & Li, Jin, 2020. "A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    12. Arthur, Joseph & Attarian, Adam & Hamilton, Franz & Tran, Hien, 2018. "Nonlinear Kalman filtering for censored observations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 155-166.
    13. Mojaver, Aida & Kheiri, Hossein, 2015. "Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 258-270.
    14. Chávez, Joseph Páez & Wijaya, Karunia Putra & Pinto, Carla M.A. & Burgos-Simón, Clara, 2022. "A model for type I diabetes in an HIV-infected patient under highly active antiretroviral therapy," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    17. Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
    18. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    19. Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.
    20. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.