IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921002915.html
   My bibliography  Save this article

Exponential synchronization of fractional-order complex chaotic systems and its application

Author

Listed:
  • Yadav, Vijay K.
  • Shukla, Vijay K.
  • Das, Subir

Abstract

In this article, exponential synchronization between fractional order chaotic systems has been studied by using exponential stability theorem. The stability analysis has been done with help of an existing lemma, which is given for Lyapunov function for fractional order system. The fractional order complex chaotic systems viz., Lorenz and Lu systems are considered to illustrate the exponential synchronization. The numerical simulation results are presented through graphical plots to verify the effectiveness and reliability of exponential synchronization. The application in communication through digital cryptography is also discussed between the sender (transmitter) and receiver using the exponential synchronization. A well secured key system of a message is obtained in a systematic way.

Suggested Citation

  • Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002915
    DOI: 10.1016/j.chaos.2021.110937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    2. Weiping Wang & Lixiang Li & Haipeng Peng & Jialiang Yuan & Jinghua Xiao & Yixian Yang, 2013. "Adaptive Synchronization of Complex Dynamical Multilinks Networks with Similar Nodes," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-12, June.
    3. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    4. GAMAL M. MAHMOUD & M. A. Al-KASHIF & SHABAN A. ALY, 2007. "Basic Properties And Chaotic Synchronization Of Complex Lorenz System," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 253-265.
    5. Xiaoxiao Lv & Xiaodi Li & Jinde Cao & Peiyong Duan, 2018. "Exponential Synchronization of Neural Networks via Feedback Control in Complex Environment," Complexity, Hindawi, vol. 2018, pages 1-13, July.
    6. Cuimei Jiang & Shutang Liu & Chao Luo, 2014. "A New Fractional-Order Chaotic Complex System and Its Antisynchronization," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-12, October.
    7. Ge, Zheng-Ming & Lin, Guo-Hua, 2007. "The complete, lag and anticipated synchronization of a BLDCM chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 740-764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ping Luo & Li Shu & Bi-Feng Zhou, 2017. "Global Exponential Synchronization of Nonlinearly Coupled Complex Dynamical Networks with Time-Varying Coupling Delays," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    2. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    3. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    4. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    5. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    6. Wang, Pengfei & Li, Shaoyu & Su, Huan, 2020. "Stabilization of complex-valued stochastic functional differential systems on networks via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    8. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Wang, Pengfei & Zou, Wenqing & Su, Huan, 2019. "Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 338-354.
    11. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    12. Yang Peng & Jiang Wu & Limin Zou & Yuming Feng & Zhengwen Tu, 2019. "A Generalization of the Cauchy-Schwarz Inequality and Its Application to Stability Analysis of Nonlinear Impulsive Control Systems," Complexity, Hindawi, vol. 2019, pages 1-7, March.
    13. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of stochastic complex networks with discrete-time and distributed coupling delayed via hybrid nonlinear and impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 381-393.
    14. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    15. Sun, Yanqin & Wu, Huaiyu & Chen, Zhihuan & Zheng, Xiujuan & Chen, Yang, 2021. "Outer synchronization of two different multi-links complex networks by chattering-free control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Zheng, Song & Yuan, Liguo, 2019. "Nonperiodically intermittent pinning synchronization of complex-valued complex networks with non-derivative and derivative coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 587-605.
    17. Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.
    18. Dawei Ding & Ya Wang & Yongbing Hu & Zongli Yang & Hongwei Zhang & Xu Zhang, 2022. "Pinning synchronization and parameter identification of fractional-order complex-valued dynamical networks with multiple weights," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-12, August.
    19. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    20. Xu, Ruiping & Kao, Yonggui & Gao, Cunchen, 2015. "Exponential synchronization of delayed Markovian jump complex networks with generally uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 682-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921002915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.